Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перегонка также Испарение

    Качество работы установок АТ во многом зависит от схем отдельных технологических узлов, в первую очередь от различных по конструктивному оформлению схем узлов перегонки нефти. Ректификационные колонны атмосферной части при одинаковой мощности имеют разные размеры, разное число тарелок. Режим работы колонн, особенно в случае применения клапанных тарелок, изучен недостаточно. Нужно более тщательно изучить системы орошения колонн, эффективность и количество циркуляционных промежуточных орошений, поскольку наблюдается несоответствие проектного количества циркулирующей флегмы и фактического. Особенно важно установить факторы, влияющие на число тарелок, предназначенных для отдельных фракций, поскольку на установках АВТ это число меняется в широких пределах. Так, по схеме с однократным испарением на каждый отбираемый дистиллят приходится по 7—8 тарелок, а при наличии двух ректификационных колонн—по 11—17. В то же время четкость погоноразделения в основных колоннах по обеим схемам практически одинакова. Ректификация и способы регулирования температурных режимов в колоннах также осуществляются по-разному. В колоннах может быть или одно острое орошение или еще дополнительно промежуточное циркуляционное орошение. [c.232]


    Наряду с числом тарелок и их конструкцией существенное влияние на фракционирующую способность колонны оказывает кратность орошения в отдельных ее секциях, а также схема перегонки. Опыт эксплуатации показал, что применение схемы двухкратного испарения целесообразно при наличии в перерабатываемой нефти больших количеств растворенных газов (порядка 1 — 3 вес. % на нефть и выше). При этом колонна предварительного испарения обеспечивает выделение из нефти смеси газа с легкими бензиновыми компонентами, и основная ректификационная колон- [c.44]

    Аналогично протекают процессы испарения и конденсации е системах гомогенных азеотропов, образующих постоянно кипящие смеси с максимумом точки кипения. Здесь также, если состав перегоняемого раствора равен уе (фиг. 27), то выкипание системы будет происходить при постоянной температуре и неизменном составе жидкой и паровой фаз во все время испарения начального раствора, пока не выкипит его последняя капля. Также н при охлаждении насыщенного пара состава уе процесс конденсации будет протекать при неизменной температуре и постоянном составе образующейся жидкой и остаточной паровой фаз, пока не перейдет в жидкость последний пузырек пара. Если же начальный состав системы отступает в ту или другую сторону от азеотропического, то перегонка и конденсация протекают с изменением температуры и состава жидкой и паровой фаз. Так, если состав а меньше Уе, то процесс перегонки сопровождается повышением температуры и обогащением остаточной жидкой фазы компонентом ау, который на интервале концентраций 0<а<уе играет роль высококипящего. Если же состав а начальной системы больше азеотропического состава Уе, то в ходе перегонки, сопровождающейся постепенным повышением температуры, состав остатка прогрессивно обогащается компонентом а, который на интервале концентраций уе <я<Г1 играет роль высококипящего. [c.66]

    К процессам первичной переработки нефти относят установки обезвоживания и обессоливания нефти, атмосферной перегонки, а также вакуумной перегонки нефти. Сырьем для установок служат нефть и газовый конденсат. Выбор технологической схемы и режима перегонки зависит от качества нефти. Наибольшее распространение в России (СССР) получили комбинированные установки первичной перегонки трехкратного испарения. На рис. 68-70 представлены технологические схемы обессоливания, атмосферной и вакуумной перегонки нефти. [c.223]


    На установках двухкратного испарения перегонка до гудрона осуществляется в две ступени сначала при атмосферном давлении нефть перегоняется до мазута, который затем перегоняется в вакууме до получения в остатке гудрона. Эти процессы осуществляются в двух ректификационных колоннах в первой нз них поддерживается атмосферное давление, во второй — вакуум. Двухкратное испарение нефтей до мазута может также осуществляться при атмосферном давлении в двух ректификационных колоннах в первой [c.296]

    Постепенное испарение с водяным паром применяют для отгонки небольшой массы растворителя от практически нелетучих масляных фракций. Однократное испарение с водяным паром применяют в процессе первичной перегонки нефти, а простую перегонку в вакууме —при разделении мазута. Для разделения тяжелых остатков широко используют также однократную перегонку в вакууме с водяным паром. Сочетание глубокого вакуума с водяным паром значительно понижает температуру перегонки и позволяет тем самым вести процесс при почти полном отсутствии разложения углеводородов с получением при этом большого отгона масляных фракций. [c.56]

    Перегонку нефти можно осуществлять на трубчатых установках двух основных типов — одноступенчатых и двухступенчатых (но могут быть и трех- и четырехступенчатые системы). В первом случае нефть перегоняется так, что на одной установке отбираются все фракции — от бензиновой до любой высококипящей фракции включительно. Во втором случае применяются две последовательно работающие установки 1) атмосферная, где из нефти отгоняются бензин, лигроин, керосин, газойль, и 2) вакуумная, где из мазута, полученного с первой установки, отгоняются масляные дестиллаты. При перегонке нефти бензин и лигроин являются легкими частями, керосин и газойль — тяжелыми. При перегонке мазута соляровая и веретенная фракции выполняют роль легких частей по отношению к высококипящим цилиндровым фракциям легкие фракции, перегоняясь совместно с более тяжелыми, понижают температуру кипения последних. Чтобы избежать разложения, во второй ступени при перегонке мазута испарение и ректификация фракций в колонне осуществляются в вакууме с одновременным применением водяного пара,. При первичной перегонке нефти испарение и ректификация фракций в колонне производятся также в присутствии водяного пара, но под атмосферным давлением. [c.89]

    К первой группе относятся всевозможные приборы для перегонки легких нефтепродуктов, а также колбы с дефлегматорами разных систем и без дефлегматоров, ко второй — лабораторные трубчатки для равновесного испарения, третью группу составляют колбы и кубики с ректификационными колоннами различных конструкций. [c.171]

    Рассмотрим фракционную перегонку двухкомпонентной жидкой смеси, не образующей азеотропного раствора, пользуясь диаграммой кипения (рис. 136). Для разделения исходную смесь состава X о нагревают при постоянном давлении до кипения (фигуративная точка Оо), при этом получается первый пузырек пара (фигуративная точка Ьо) состава Пар по сравнению с исходной жидкостью более богат легколетучим компонентом В, а раствор обогащается компонентом А и его температура кипения при подводе теплоты возрастает (фигуративная точка а ). В процессе перегонки состав жидкого раствора изменяется от Х до а состав пара — от Ко ДО Кх- Если весь полученный пар сконденсировать (первая фракция), то конденсат будет иметь состав У и промежуточный между Ко и У . При кипении оставшейся жидкости (фигуративная точка 04) состава Х1 получается пар, также обогащенный легколетучим компонентом В. При изменении состава жидкого раствора от Х1 до состав пара меняется от У г до У и получается конденсат состава У2 (вторая фракция). При дальнейшем испарении оставшейся жидкости аналогично можно получить третью, четвертую и т. д. фракцию, при этом кипящая жидкость по составу будет приближаться к чистому компоненту А с температурой кипения Т. Если каждую из полученных фракций подвергнуть аналогичной перегонке, то получится набор новых фракций, обогащенных легколетучим компонентом. Сходные по составу фракции объединяют и подвергают дальнейшему фракционированию до тех пор, пока конденсат не будет представлять собой практически чистый компонент В, а перегоняемая жидкость — чистый компонент А. [c.394]

    Для подвода дополнительного тепла в низ атмосферной и вакуумной колонн промышленных установок перегонки нефти такие способы, как кипятильник с паровым пространством или горячая струя , неприемлемы по причине низкой термостабильности кубовых остатков — мазута и гудрона. В этой связи с целью создания требуемого парового орошения в отгонной секции этих колонн, а также испарения (отпаривания) низкокипящих фракций нефти (попадающих в остаток в условиях однократного испарения в секции питания) на практике широко применяют перегонку с подачей водяного пара. [c.207]


    На установках и блоках вакуумной перегонки также применяются схемы однократного и двукратного испарения (рис. 18). [c.134]

    Экспериментальное определение доли отгона и состава образовавшихся фаз при однократном испарении нефтяных смесей является длительной и дорогой операцией. В то же время описанные выше аналитические методы расчета достаточно трудоемки и требуют обязательного применения ЭВМ. Кроме того, отсутствие во многих случаях полных данных по углеводородному составу нефтяных смесей и особенно нефтяных остатков, а также условность дискретизации сложных нефтяных смесей приводит к тому, что более надежным становится зачастую использование эмпирических методов расчета однократной перегонки по данным истиной или стандартной разгонки. Характерное положение кривых фракционного состава и кривых ОИ обеспечивает при этом достаточно высокую точность определения координат точек кривой ОИ на основе эмпирических методов расчета. [c.66]

    Предлагается также схема перегонки нефти с предварительным двукратным ее испарением (рис. П1-5, б) [6]. В первой ступени испарения нефть при давлении 0,49 МПа нагревается в теплообменниках до 129 °С и поступает в сепаратор I ступени с тарелками вверху. На тарелки подается вода для отделения водорастворимых соединений. Затем пары из сепаратора вводятся в основную ректификационную колонну под нижнюю тарелку, а [c.155]

    В печи первой ступени, также невысока — 385 °С. Остаток перегонки, полученный в первой колонне,— гудрон подвергают дополнительному нагреву до 390—430 °С [35—37] и направляют на вторую ступень вакуумной перегонки (рис. 18). Во второй вакуумной колонне поддерживается глубокий вакуум. Так, давление в зоне питания (испарения) составляет 7—18 кПа [11, 35, 37], а наверху — около 8 кПа [И, 37]. В связи с высокими температурами в этой колонне во избежание крекирования остатка осуществляют квенчинг — возврат части охлажденного остатка в низ колонны [35]. Расход водяного пара на первой ступени вакуумной перегонки составляет примерно 2,5%, а на второй — 3,3% в пересчете на исходный мазут [37]. [c.37]

    Для перегонки термически нестабильных веществ применяют также испаряющий агент, в качестве которого обычно используют перегретый водяной пар. С введением в колонну водяного пара снижается парциальное давление углеводородов, а значит, и их температура кипения. Водяной пар подают в низ колонны. При испарении углеводородов здесь, снижается температура жидкой фазы, поэтому эффективность действия водяного пара ограничена. [c.34]

    Простая перегонка нефтяных смесей изображается кривыми однократного испарения (ОИ), устанавливающими зависимость доли отгона от температуры нагрева смеси. В американской практике используют аналогичные кривые равновесного однократного испарения EFV (equilibrium flash vaporization). Кривые ОИ характеризуют также условные температуры кипения смеси при нечетком их разделении, а начальные и конечные точки кривой ОИ определяют соответственно истинные температуры кипения жидких смесей и конденсации паровых смесей заданного состава. [c.57]

    Из рис. 96 видно также, что для данной нефти при доле отгона е >0,30 температура нагрева при однократном испарении ниже, чем при постепенном испарении (при условии отбора одного и того же количества дистиллятов). Следовательно, при перегонке нефти с однократным испарением на нагрев сырья расходуется меньше тепла, чем [c.202]

    Как указывалось выше, термин перегонка можно заменить на разделение по каплям (см. гл. 2). Этот термин имеет, таким образом, собирательное значение и относится к процессам разделения смесей взаиморастворимых жидкостей путем испарения жидкости и конденсации паров, обогащенных легколетучим компонентом. Поэтому термин перегонка не содержит никаких пояснений относительно характера процесса. Понятия дистилляция (или простая перегонка) и ректификация четко определяют также и способ работы (рис. 23). [c.38]

    Чтобы более полно отделить низкокипящий компонент, в колоннах этих групп можно проводить многократную перегонку путем циркуляции разделяемой смеси. Отметим также, что в данных дистилляторах испарение происходит только с поверхности пленки жидкости и молекулы селективно покидают эту поверхность без какого-либо механического воздействия [147]. [c.283]

    Водяной пар применяют также для интенсификации нагрева нефтяных остатков в трубчатых печах при вакуумной перегонке. При этом добиваются большей степени испарения нефтепродукта, предотвращения закоксовывания труб. Расход острого пара в этом случае принимают 0,3—0,5% на сырье. [c.69]

    Для перегонки легких нефтей с высоким содержанием рас — ТВС римых газов (1,5 —2,2 %) и бензиновых фракций (до 20—30 %) и фракций до 350 °С (50 — 60 %) целесообразно применять атмосферную перегонку двухкратного испарения, то есть установки с предварительной отбензинивающей колонной и сложной ректификационной колонной с боковыми отпарными секциями для разделения частично отбензиненной нефти на топливные фракции и мазут. Двухколонные установки атмосферной перегонки нефти получили в отечественной нефтепереработке наибольшее распространение. Они обладают достаточной технологической гибкостью, универсальностью и способностью перерабатывать нефти различного фрак — ционного состава, так как первая колонна, в которой отбирается 50 — 60 % бензина от потенциала, выполняет функции стабилизатора, сг/аживает колебания в фракционном составе нефти и обеспечивает стабильную работу основной ректификационной колонны. Применение отбензинивающей колонны позволяет также снизить данление на сырьевом насосе, предохранить частично сложную Ko.voHHy от коррозии, разгрузить печь от легких фракций, тем самым не жолько уменьшить требуемую тепловую ее мощность. [c.183]

    При выборе третьего компонента для азеотропной перегонки необходимо учитывать следующее 1) после его добавления температура кипения смеси третьего компонента с неароматическими углеводородами (новой азеотропной смеси) должна значительно отличаться от температуры кипения выделяемого ароматического углеводорода или его азеотропной смеси с третьим компонентом 2) желательно, чтобы новая образующаяся азеотропная смесь содержала максимальное количество неароматических углеводородов 3) третий компонент должен иметь низкую теплоту испарения, чтобы расход тепла на отгон был минимальным он должен также легко регенерироваться для дальнейшего использования в процессе, например путем водной промывки, разделения фаз при охлаждении и др., и быть химически инертным — не вступать в реакцию с разделяемыми углеводородами, не корродировать аппаратуру, быть термически стабильным, нетоксичным и доступным в промышленном масштабе. [c.41]

    Простая перегонка представляет собой процесс однократного частичного испарения жидкой смеси и конденсации образующихся паров. Простая перегонка применима только для разделения смесей, летучести компонентов которой существенно различны, т. е. отношение летучестей (относительная летучесть) компонентов значительна. Обычно ее используют лишь для предварительного грубого разделения жидких смесей, а также для очистки сложных смесей от нежелательных примесей, смол и т. п. Известны несколько разновидностей простой перегонки, которые будут рассмотрены ниже. [c.471]

    Изучалось испарение компонентов нелетучей матрицы в присутствии легкокипящих углеводородов. Учитывая сложный состав нефтей и нефтепродуктов, начальные исследования для удобства их интерпретации проводили на модельных смесях, составленных из легкой и тяжелой частей. В качестве легкой части применяли смесь индивидуальных углеводородов гептан-толуол (ГГ) в соотношении 1 1, а также бензиновые фракции с температурами выкипания 80- 120°С (Б1) и 120- 180 С (Б2), полученные при атмосферной перегонке смеси западно-сибирских нефтей. В качестве тяжелой части использовали гудрон — остаток вакуумной перегонки мазута западно-сибирских нефтей. [c.104]

    Ранее для нефтей, не содержащих газ, перегонку нефти осуществляли с предварительным испарением нагретой нефти в испарителе — пустотелой колонне, в которой сверху удалялась легкая паровая фаза, поступающая как и нагретая в печи отбензиненная нефть, в ректификационную колонну При этом также понижалось давление в системе. [c.61]

    На установках и блоках вакуумной перегонки также применяются схемы однократного и двукратного испарения (рис. 16). Наиболее распространены блоки с однократным испарением мазута (рис. 16, а). Они построены на большинстве отечественных НПЗ. Но, как показал опыт эксплуатации, на таких блоках не удается получить хорошо отректифицированные вакуумные дистилляты с четкими пределами перегонки, необходимые для получения высококачественных масел. Среднее значение налегания температур выкипания смежных вакуумных дисти,ллятов составляет 70—130 °С. [c.127]

    Газообразные выбросы установок перегонки и крекинга при переработке нефти в основном содержат углеводороды С ,Н2п, моноксид углерода СО, сероводород НгЗ, аммиак ЫНз и оксиды азота МхОу. Та часть вешеств, которую удается собрать в газоуловителях перед выходом в атмосферу, сжигается в факелах, в результате чего появляются еще и продукты сгорания углеводородов (моноксид углерода СО и диоксид серы ЗОо). Твердые частицы в потоке газов, выходящих из установок крекинга, вновь возвращаются. Кислотные продукты, выделяемые в процессе алкилирования, полностью термически разлагаются при сжигании в отдельной установке, однако при этом образуется фторводород НР, поступающий в атмосферу. Имеются еще и неконтролируемые эмиссии, вызванные различными утечками, недостатками в обслуживании оборудования, нарушениями технологического процесса, авариями, а также испарением газообразных веществ из технологической системы водоснабжения и из сточных вод. [c.66]

    Также не представляют особого отличия процессы постепенного испарения жидкостей, составы которых отличаются от азе-отропического состава уе. В ходе 1епрерывной перегонки фигуративные точки равновесных фаз, по мере повышения температуры, движутся по изобарным кривым кипения и конденсации вверх, по направлению к фигуративным точкам С и О чистых компонентов и та. Если состав а меньше Уе, то в конце перегонки, с последней каплей остаточной жидкости получается чистый компонент а если же "состав о. больше Уе, то в конце перегонки получается чистый компонент w. Относительный вес остаточной жидкости, полученной в процессе постепенного испарения, может быть рассчитан по уравнению 25. [c.65]

    На установке впервые применены укрупненные теплообменники, кожухотрубчатые конденсаторы и холодильники вместо погружных все колонны, кроме вакуумной, оборудованы тарелками с З-образными элементами, что полностью себя оправдало. Вакуумная колонна оборудована желобчатыми тарелками. Впервые также большое число технологического оборудования было размещено на открытых площадках (вне помещения) под навесом. Опыт эксплуатации описанной установки подтвердил возможность работы по схеме однократного испарения и в дальнейшем был перенесен на вновь проектируемые мощные комбинированные установки первичной перегонки АТ и АВТ. Размещение технологического оборудования под открытым небом под навесом также получило широкое распространение. Оказалось, что такое решение является весьма целесообразным как по технико-экономическим, так и по санитарно-гигиеническим соображениям. Кроме того, в проекте предусмотрены особые мероприятия для ведения монтажных и ремонтных работ в климатически холодных районах наличие специальных передвижных агрегатов для подогрева воздуха на рабочем [c.102]

    Из рассмотренных примеров можно еще уяснить, что на рис. 8. 2 любая точка, расположенная на заштрихованной площади /, характеризует наличие только жидкой фазы, соответственно площади /7 — наличие наров и жидкой фазы и, наконец, площади III — наличие только одной паровой фазы. Следует также отметить, что, применяя многократное и постепенное испарение или конденсацию, можно получить компоненты в достаточно чистом виде, но их количества будут очень незначительны по сравнению с количеством взятой в перегонку смеси. [c.152]

    Фракционированная перегонка бензина, предпринимаемая с целью исследования его состава с технической точшш зрения, вполне удовлетворяется перегонкой с дефлегматорам Глинского или другого принятого образца. Одни и тот же бензин, перегоняемый с дефлегматорами разных конструкций, может показать различные количества остатка выше 100° поэтому разница в результатах перегонки в 10—15% (считая на остаток) не может иметь решающего значения. Следует также, не обманывая себя, отказаться от десятых долей процента, по крайней мере в тех случаях, когда перегоняется всего 100—200 см . Одно испарение, не говоря уже о смачивании, лип[aet эти десятые реального значения. [c.108]

    С помощью однократной простой перегонки, как правило, не удается чисто разделить на компоненты смесь двух или нескольких жидкостей с разницей в температурах кипения менее 80 С. При нагревании таких смесей вместе с легколетучей жидкостью испа- ряется также некоторое количество компонента с более высокой температурой кипения. В отличие от, простой перегонки, при которой разделение составляющих смесь продуктов происходит только на стадии испарения, фракционная перегонка предусматривает частичную конденсацию образующихся паров я возвращение их обратно в перегонный сосуд. Конденсации и возврату в перегонную колбу подвергаются в первую очередь пары высококипящего компонента, 2 очищенные пары летучего продукта далее полностью конденсируются в холодильнике и собираются [c.141]

    При аналитической и препаративной перегонке в лаборатории обычно проводят процесс с полной конденсацией паров. Метод парциальной конденсации используют только при проведении сравнительной ректификации, аналогичной промышленному процессу. В этом случае дефлегматор устанавливают в верхней части колонны (см. рис. 170а). Преимущество метода с полной конденсацией паров состоит в том, что этим методом сравнительно просто разделять конденсат в определенном соотношении, в то же время устанавливать постоянной скорость подачи флегмы с помощью дефлегматора очень затруднительно, поскольку даже незначительные колебания расхода и температуры охлаждающей воды вызывают изменение составов флегмы и паров дистиллята, а также их количеств. В промышленности скорость подачи флегмы при перегонке методом парциальной конденсации обычно не измеряют, а регулируют степень охлаждения дефлегматора по температуре в головке колонны. Количество образующейся флегмы рассчитывают приблизительно, измеряя расход и температуру охлаждающей воды на входе и выходе дефлегматора с учетом удельной теплоты испарения дистиллята. Поскольку в промышленности обычно работают с одними и теми же продуктами, такой метод вполне пригоден. Однако при разделении многокомпонентной смеси определение количества подаваемой флегмы подобным образом становится слишком неточным. [c.247]

    Реакционная смесь на выходе из реактора имеет температуру )60°С, Она отдает свое тепло вначале в теплообменниках 4 и 3 для подогрева этилбензола и затем в котле-утилпзаторе 2 для получения пара низкого давления (этот пар служит для испарения и разбавления этилбензола перед теплообменником 3). Затем парогазовую смесь охлаждают в системе холодильников 6 водой и рассолом, отделяют в сепараторе 7 коиденсат от газа, который постугает в линию топливного газа. После этого в сепараторе 8 конден- ат разделяют на водную и органическую фазы. Последнюю, содержащую непревращенный этнлбензол, стирол и побочные продукты (бензол, толуол), называют печным маслом. Оно поступает fia ректификацию, которую оформляют с учетом довольно значительной склонности стирола к термической полимеризации. Чтобы ге предотвратить, используют ингибиторы (гидрохинон и др.), снижают температуру перегонки за счет примеиеиия вакуума, сокращают время пребывания стнролсодержащих жидкостей в колоннах путем примеиеиия иасадок, специальных конструкций кубов и т.д. Ректификация затрудняется также близостью температуры кипения этилбензола (136 С) и стирола (145°С). [c.482]

    Степень возможного разжижения масла вследствие неполного испарения топлива определяют также температуро й конца кипения топлива, а также разрывом между температурой конца кипения и выкипанием 90 /о бензина. С повышением температуры конца кипения увеличивается разжижение смазки и агарообра-зование, вызываемое неполнотой сгорания топлива. Особенное значение с этой стороны имеет остаток после перегонки, т. е. количество остатка в колбе после окончания разгонки топлива дб конечной, обусловленной техническими условиями, температуры конца кипения. [c.204]

    Проявление кризисных состояний с образованием структурных модификаций в системе можно проследить также на примере процесса перегонки нефтяного сырья. В общем случае при перегонке нефтяного сырья, по мере испарения части легких компонентов происходит сближение, коалесценция и взаимная фиксация смолисто-ас-фальтеновых частиц. При этом в межчастичном пространстве иммобилизуются компоненты среды, которые находятся также в виде прослоек между частицами. В результате в системе формируются флокулы, находящиеся в броуновском движении. В этих условиях в системе сосуществуют структурные образования в виде мицелл и сложных структурных единиц. Дальнейшее испарение системы приводит к вытеснению части иммобилизованных компонентов, практическому исчезновению прослоек между частицами и их непосредственному контакту. При этом образуются достаточно прочные агрегативные комбинации, окклюдирующие тем не менее некоторое количество компонентов, находившихся ранее в иммобилизованном состоянии. Остаточное количество последних зависит прежде всего от начальных размеров смо-листо-асфальтеновых частиц и физико-химических параметров испаряемой системы. Воздействуя на систему в кризисных состояниях можно регулировать конфигурацию и плотность упаковки структурных образований, изменять количество иммобилизованной фазы, переводить ее в раствор с последующим удалением из системы при перегонке. [c.172]

    Фракционная перегонка — испарение металлических примесей из матрицы (см. также электронно-лучевая плавка высокоплав -ких металлов). [c.588]


Смотреть страницы где упоминается термин Перегонка также Испарение : [c.131]    [c.200]    [c.354]    [c.152]    [c.200]    [c.201]    [c.287]    [c.72]    [c.157]   
Химическая термодинамика (1950) -- [ c.662 ]




ПОИСК







© 2024 chem21.info Реклама на сайте