Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитическая дегидроциклизация (ароматизация) парафиновых углеводородов

    КАТАЛИТИЧЕСКАЯ ДЕГИДРОЦИКЛИЗАЦИЯ (АРОМАТИЗАЦИЯ) ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ [c.65]

    В результате изучения активности различных катализаторов дегидроциклизации, а также кинетики и механизма реакций уже в начале 40-х годов были найдены стойкие каталитические системы (преимущественно с окисью хрома) и разработаны условия процесса, позволяющие щироко применять ароматизацию парафиновых углеводородов на практике. Выходы ароматических углеводородов стали достигать 80—90%. [c.237]


    Основное направление научной деятельности Бориса Александровича— это изучение углеводородов методов их анализа, синтеза и каталитических превращений. Открытые им вместе с учениками три новых типа реакций — гидрогенолиз. циклопентановых углеводородов, ароматизация парафиновых углеводородов и дегидроциклизация последних с образованием пятичленного кольца — позволили лучше понять механизм многих нефтехимических процессов. Широкое изучение гидрогенолиза различных цикланов и других каталитических превращений циклических углеводородов — от соединений, содержащих трехчленный цикл, до веществ с 15-членным циклом в молекуле, многочисленные работы по каталитическому гидрированию непредельных соединений дали богатый материал для сопоставления химических свойств со строением органической молекулы и позволяют глубже проникнуть в природу непредельных угл еводородов. [c.6]

    Известно, что введение небольших количеств калия и цезия в состав алюмохромовых катализаторов повышает выход целевых продуктов в реакциях ароматизации парафиновых углеводородов [1]. Однако в литературе отсутствуют надежные сведения о влиянии других щелочных элементов на каталитические свойства алюмохромовых катализаторов. Этому вопросу и посвящена настоящая статья. В ней изложены результаты исследования влияния добавок эквивалентных количеств лития, натрия, калия, рубидия и цезия на активность двух препаратов (А и Б) алюмохромовых катализаторов в реакциях дегидроциклизации к-гептана и дегидрогенизации циклогексана при 520°С. [c.342]

    Изучение процесса ароматизации при атмосферном давлении на окисных катализаторах показало, что достаточная глубина ароматизации достигается при температуре не ниже 400—500 °С. В этих условиях алюмомолибденовый и алюмохромовый катализаторы не отравляются сернистыми соединениями и дегидроциклизация парафиновых и дегидрирование шестичленных нафтеновых углеводородов протекает достаточно глубоко. Реакций изомеризации парафиновых углеводородов почти не наблюдается. Однако процесс осложняется значительным коксообразованием, особенно в присутствии пятичленных нафтеновых углеводородов. Высокое коксообразование и сравнительно низкие качества получаемого бензина являются дополнительными причинами, лимитирующими применение каталитической ароматизации при атмосферном давлении в промышленных масштабах. [c.20]

    Реакция дегидроциклизации играет важную роль в процессах каталитического риформинга, так как получаемые ароматические соединения характеризуются высокими октановыми числами. Сказанное иллюстрируется данными, приведенными на стр. 476 и рис. 23 и 24. Значения октановых чисел гораздо выше тех величин, которые характеризуют продукты изомеризации парафиновых углеводородов и особенно высокомолекулярных. Реакция ароматизации как источник высокооктановых компонентов топлив приобретает все большую важность в нефтяной промышленности. [c.500]


    В настоящее время известны два типа реакций дегидроциклизации углеводородов, т. е. такого их каталитического превращения, обратного гидрогенолизу цикланов, при котором открытая цепь углеродных атомов замыкается в цикл с отщеплением водорода. Эта открытая цепь может принадлежать либо углеводороду алифатического ряда, либо являться достаточно длинной боковой цепью циклического углеводорода, например алкилбензола. Хронологически первым типом дегидроциклизации яляется ароматизация алифатических углеводородов (или циклических с достаточно длинными боковыми цепями), названная, по предложению Б. А. Казанского и А. Л. Либермана [346, 372], Св-дегидроциклизацией,— по числу углеродных атомов, входящих в возникающий цикл. Вторым типом является Сз-дегидроциклизация (по терминологии тех же авторов), приводящая к углеводородам с пятичленным циклом, например к образованию циклопентановых углеводородов из парафиновых. [c.18]

    Современные каталитические процессы получения ароматических углеводородов и, в частности, бензола из нефти, как, например, платформинг , основываются главным образом на ароматизации шестичленных нафтенов. Между тем бензины нефтей большинства восточных районов СССР имеют преимущественно парафинистый характер и содержат нафтенов очень немного. В связи с этим снова приобретает актуальность реакция каталитической дегидроциклизации парафиновых углеводородов и, в частности, реакция превращения к-гексана в бензол. [c.347]

    В условиях каталитического риформинга могут протекать многие реакции дегидрирование нафтеновых углеводородов, гидрокрекинг и дегидроциклизация парафиновых углеводородов, изомеризация парафиновых углеводородов и гомологов циклопентана в циклогексановые углеводороды с последующей их ароматизацией. Определенную роль играют реакции гидрирования серосодержащих соединений и гидрогенизации кокса, скапливающегося на поверхности катализатора. [c.164]

    Парафины при каталитическом риформинге превращаются в ароматические углеводороды путем дегидроциклизации. Если исходный парафин содержит менее шести атомов углерода в основной цепи, то ароматизации предшествует изомеризация с удлинением основной цепи. Скорость ароматизации возрастает с увеличением длины основной цепи. Парафиновые углеводороды, содержащие десять и более атомов углерода, образуют ароматические углеводороды с конденсированными кольцами. В результате дегидроциклизации парафинов образуются гомологи бензола и нафталина с максимальным содержанием ме-тильных заместителей в ядре (исходя из строения исходного парафина). Гидрокрекинг парафинов приводит к образованию низкомолекулярных соединений. Значение гидрокрекинга в процессе риформинга неоднозначно. С одной стороны, уменьшение молекулярной массы парафиновых углеводородов приводит к повышению октанового числа, а с другой — образование значительного количества низкомолекулярных газообразных продуктов снижает выход бензина. [c.70]

    Алюмохромовые (катализаторы применяются при каталитической дегидроциклизации (ароматизации) парафиновых углеводородов, при дегидротенизадии циклогексановых углеводородов, при ароматизации нефтяных ф ракций, а также при дегидрогенизации бутана, изопентана и т. п. Описанный ниже способ приготовления алюмохромового катали-затор.а, активированного добавкой окиси калия, является наиболее простым, хотя катализатор при этом получается недостаточно стойким. Способ заключается в пропитке окис я алюминия сначала раствором хромовой кислоты, а затем раствором поташа. Восстановление катализатора происходит в-каталитической печи за счет первых порций дегидрируемого углеводорода. [c.60]

    Исследования связаны с разработкой основ нефтехимии и каталитического превращения углеводородов. Им и его учениками открыты новые каталитические р-ции образования циклических углеводородов, различные каталитические превращения цикланов. Установил закономерности гидрогенизации и дегидрогенизации углеводородов, синтезировал новые углеводороды высокой чистоты. Совм. с Н. Д. Зелинским и А. Ф. Платэ открыл (1934) каталитическую р-цию селективного гидрогенолиза циклопеитано-вых углеводородов в атмосфере водорода на платиновом катализаторе с разрывом только одной из пяти углерод-углеродных связей. Совм. с А. Ф. Платэ открыл (1936) рсакци ю Се,-дегидроциклизации (ароматизации) парафиновых углеводородов. Совместно с сотр. открыл (1954) реакцию Сг,-дегидро-циклизации. Установил (1950) правила гидрогенолиза и изомеризации Си- и С,1-циклоалканов, а также закономерности гидрирования этилена и его гомологов различной степени алкилирования. Нап1ел новые пути и оптимальные условия осуществления различных р-ций каталитической полимеризации и термического превращения углеводородов при высоком давлении. Исследовал (1946— 1960) состав бензиновых фракций нефтей различных месторождений. Создал большую школу химиков. [c.187]


    Парафиновые углеводороды, имеющие в цепи шесть и более атомов углерода, способны в присутствии ряда катализаторов превращаться в ароматичесмие углеводороды с одновременным отщеплением водорода. Эта реакция получила название каталитической дегидроциклизации парафиновых углеводородов. Строение полученных ароматических углеводородов непосредственно связано со строением исходных парафиновых углеводородов. Так, н-гексан образует бензол, н-гептан — толуол, н-октан образует смесь о-ксилола и этил-бензол.а, 2,5-диметилгексан (диизобутил) превращается в п-ксилол и т. д. Реакция каталитической ароматизации парафиновых углеводородов была открыта советскими химиками. В присутствии платинированного угля, как показали в 1936 г. Б. А. Казанский и А. Ф. Платэ, эта реакция протекает при температуре около 300°. В 1953 г. Б. А. Казанский [c.65]

    Реакция ароматизации (каталитической дегидроциклизации) парафинов, приводящая к образованию ароматических углеводородов, была открыта и подвергнута широкому теоретическому исследованию в 1935 г. тремя группами советских исследователей, работавших независимо друг от друга Б. А. Казанским и А. Ф. Платэ Б. Л. Молдавским и Г. Д. Камушер В. И. Каржевым, М. Г. Северьяновой и А. Н. Сиовой. (А. Ф. Платэ, Каталитическая ароматизация парафиновых углеводородов, Изв. АН. СССР, 1948.)— Прим. ред. [c.238]

    Таким образом, основной реакцией, протекающей наиболее полно и избирательно при каталитическом риформинге, является дегидрирогенизация шестичленных нафтенов. Второй важнейшей реакцией ароматизации является дегидроциклизация парафиновых углеводородов. Повышение температуры и снижение давления увеличивает термодинамически возможную глубину дегидрирования и дегидроциклизации, однако высокие температуры промышленного процесса каталитического риформинга (480-540°С) вызывают неизбежные в этих условиях реакции крекинга. Образующиеся осколки. молекул [c.11]

    В работе [32] проведено сравнительное исследование каталитической активности металлического хрома,а также карбидов СгдС2 и Сг,Сд при ароматизации к-гексана ик-октана. Было обнаружено отсутствие каталитической активности у хрома и ароматизирующая способность у обоих карбидов хрома, причем Сг Сз оказался более активным. Отсутствие каталитической активности у хрома может быть связано с тем обстоятельством,что,несмотря на наличие у хрома формально средней по величине акцепторной способности, при окружении его соседними атомами в кристаллической решетке металла осуществляется образование стабильной конфигурации Принятие я-электронов,например водорода в реакциях дегидрогенизации,при этом сильно затруднено или вообще невозможно, что и показано на опыте [33] значительно легче может происходить отдача х-электронов и появляться каталитическая активность в соответствующих реакциях. При образовании карбидов хрома эта стабильная конфигурация нарушается и происходит донорно-акценторное взаимодействие между атомами хрома и углерода, которое сводится к передаче внешних (главным образом 4 ) электронов хрома на коллективизацию с р-электронами углерода. При этом в связи с относительно небольшой величиной для хрома и высоким ионизационным потенциалом атомов углерода вероятен не только переход х-электро-нов хрома в направлении остова атома углерода, но и частичное нарушение 3( -конфигурации с соответственным повышением акцепторной способности хрома. С повышением относительного содержания углерода в карбидных фазах хрома увеличивается вероятность образования связей между атомами углерода (что следует также из усложнения структурных мотивов атомов углерода при увеличении отношения С/Сг), которые стремятся в пределе к образованию устойчивой конфигурации типа характерной для алмаза (что эквивалентно резкому повышению ионизационного потенциала атомов углерода), и в конечном счете ко все большей возможности нарушения 3 -конфигурации атомов хрома. Это вызывает резкий рост каталитической активности при переходе от хрома к его карбидам, в которых атомы углерода образуют цепи. В случае окиси хрома, вследствие высокого ионизационного потенциала кислорода, коллективированные электроны хрома и кислорода резко смещены в направлении атомов кислорода, что содействует нарушению устойчивой конфигурации -электронов хрома, повышает акцепторную способность его остова и вызывает высокую каталитическую способность окиси хрома, например в реакциях типа дегидроциклизации парафиновых углеводородов. Исходя из этого окислы вообще должны обладать относительно высокими каталитическими свойствами, особенно низшие окислы переходных металлов, так как высшие окислы, как правило, являются полупроводниками с большой шириной запрещенной зоны, затрудняющеь электронные переходы. Последнее относится и к некоторым другим тугоплавким фазам в областях их гомогенности, когда при уменьшении содержания неметалла в пределах этих областей появляются энергетические разрывы, как это происходит, например, для нитридов титана и циркония [33—35]. [c.243]

    Научные исследования связаны с разработкой основ нефтехимии и каталитического превращения углеводородов. Им и его учениками открыты новые каталитические реакции образования циклических углеводородов, различные каталитические превращения цикланов. Установил закономерности гидрогенизации и дегидрогенизации углеводородов, синтезировал образцы новых углеводородов высокой чистоты. Совместно с Н. Д. Зелинским и Л. Ф. Платэ открыл (1934) каталитическую реакцию селективного гидрогенолиза циклопентано-вых углеводородов в атмосфере водорода на платиновом катализаторе с разрывом только одной из пяти углерод-углеродных связей. В дальнейшем открыл гидро-генолиз других цикланов с 3—15 атомами углерода в кольце. Совместно с А. Ф. Платэ открыл (1936) реакцию Се-дегидроциклизации, или ароматизации, парафиновых угле- водородов. Совместно с сотрудниками открыл (1954) реакцию Сб-дегидроциклизации. Установил механизм каталитических превращений гем-двузамещенных цикло-гексанов и сииранов на платиновом катализаторе, а также каталитических превращений цикланов с 7-членными циклами. Установил (с [c.215]

    Почти четверть века отделяет нас от работ советских исследова-гелей, впервые установивших возможность получения ароматических углеводородов из парафиновых путем каталитической дегидроциклизации. Сведения об этой реакции были опубликованы в 1936 г. тремя группами исследователей Каржев, Северьянова и Сиова [1] показали, что в присутствии хромо-медного катализатора парафиновые углеводороды при 500—550°С превращаются в ароматические Молдавский и Камушер 12] нашли, что аморфная окись хрома способна при 450—470° С катализировать эту же реакцию Казанский и Платэ [3] обнаружили, что в присутствии платинированного угля при 305 310° С происходит дегидроциклизация парафиновых углеводородов с образованием ароматических углеводородов. В первых двух случаях ароматизация проходила с довольно значительным выходом ароматических углеводородов, хотя и сопровождалась частичным крекингом исходных парафинов и их дегидрогенизацией в олефины. В присутствии платинированного угля выходы ароматических углеводородов были незначительными и изменялись в зависимости от строения исходного парафина. Однако реакция шла очень гладко, без крекинга, с образованием лишь небольшого количества олефинов, а также, как это было показано значительно позднее (в 1954 г.) Казанским, Либерманом и их сотрудниками [4], с образованием углеводородов ряда циклопентана. [c.83]

    Промышленный процесс каталитического риформинга протекает при 470—550 °С. В этих условиях все углеводороды, присутствующие в исходном сырье, претерпевают те или иные превращения. Ароматические углеводороды образуются преимущественно в результате реакции дегидрирования шестичленных циклоалкановых углеводородов и дегидроизомеризации пятичленных алкилированных циклоалкановых углеводородов. В меньшей степени ароматизация является следствием дегидроциклизации парафиновых [c.173]


Смотреть страницы где упоминается термин Каталитическая дегидроциклизация (ароматизация) парафиновых углеводородов: [c.66]    [c.187]    [c.19]    [c.349]    [c.349]    [c.4]    [c.56]    [c.156]    [c.87]    [c.56]    [c.243]   
Смотреть главы в:

Краткое руководство к практикуму по химии нефти -> Каталитическая дегидроциклизация (ароматизация) парафиновых углеводородов




ПОИСК





Смотрите так же термины и статьи:

Ароматизация

Ароматизация Дегидроциклизация

Дегидроциклизация

Каталитическая С- и Сс-дегидроциклизация

Каталитическая ароматизация

Каталитическая дегидроциклизация парафинов

Парафиновые углеводороды



© 2025 chem21.info Реклама на сайте