Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитическая дегидроциклизация парафинов

    В 1936 г. в СССР одновременно в трех лабораториях была открыта реакция непосредственной каталитической дегидроциклизации парафиновых углеводородов в ароматические. Б. Л. Молдавский и Г. Д. Камушер в Государственном институте высоких давлений осуществили дегидроциклизацию при 450—470°С на окиси [c.9]

    Каталитическая дегидроциклизация парафиновых углеводородов на платиновых катализаторах протекает с малыми скоростями. Например, при температуре около 300 °С из н-гептана образуется только 1,7 вес. % ароматических углеводородов, из парафиновых углеводородов Са—Сд — около 10 вес. % ароматических углеводородов [7, 8]. [c.18]


    КАТАЛИТИЧЕСКАЯ ДЕГИДРОЦИКЛИЗАЦИЯ (АРОМАТИЗАЦИЯ) ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ [c.65]

    Каталитическая дегидроциклизация парафиновых углеводородов, открытая более 30 лет назад в Советском Союзе, подробно изучалась в различных странах многими исследователями [1—3]. Были опубликованы обзоры по этому вопросу [4]. [c.135]

    При каталитическом риформинге углеводороды нефтяных фракций претерпевают значительные превращения, в результате которых образуются ароматические углеводороды. Это—дегидрирование шестичленных нафтеновых углеводородов, дегидроизомеризация алкилированных пятичленных нафтенов и дегидроциклизация парафиновых углеводородов одновременно протекают реакции расщепления и деалкилирования ароматических углеводородов, а также их уплотнения, которые приводят к отложению кокса на поверхности катализатора. Для предотвращения закоксовывания катализатора и гидрирования образующихся при крекинге непредельных углеводородов в реакторе поддерживается давление водорода 3—4 МПа при получении высокооктанового бензина и 2 МПа — при получении индивидуальных ароматических углеводородов. [c.41]

    В книге собраны научные труды академика Б. А. Казанского по каталитической дегидроциклизации парафиновых углеводородов в ароматические и циклопентановые углеводороды, по превращениям углеводородов, содержащих 3—15-членные циклы, под действием водорода в присутствии металлических и окисных катализаторов, а также по гидрированию и изомеризации олефинов. Результаты этих работ имеют большое значение в развитии представлений о сущности гетерогенно-каталитических реакций и вскрывают химизм ряда нефтехимических процессов. [c.4]

    Каталитическая дегидроциклизация парафиновых углеводородов. V. Международный нефтяной конгресс. М., ГНТИ Нефтяной и горно-топливной литературы, [c.58]

    Каталитический риформинг проводится под давлением водорода, который получается в результате дегидрирования нафтеновых и дегидроциклизации парафиновых углеводородов. Проведение его в кипящем слое катализатора обеспечивает непрерывность работы и изотермичность процесса. Огромным преимуществом является возможность переработки высокосернистого сырья без предварительного обессеривания его. Процесс протекает на алюмомолибденовом катализаторе. Кипящий слой позволяет осуществлять более тонкую регулировку температуры, отпадает необходимость промежуточного нагрева. При получении топлива с одинаковой октановой характеристикой температура паров продукта на входе в реактор может быть понижена по сравнению с процессом в неподвижном слое катализатора. Снижение средней температуры в слое приводит к увеличению выхода целевого продукта за счет легких фракций. [c.250]


    Современные каталитические процессы получения ароматических углеводородов и, в частности, бензола из нефти, как, например, платформинг , основываются главным образом на ароматизации шестичленных нафтенов. Между тем бензины нефтей большинства восточных районов СССР имеют преимущественно парафинистый характер и содержат нафтенов очень немного. В связи с этим снова приобретает актуальность реакция каталитической дегидроциклизации парафиновых углеводородов и, в частности, реакция превращения к-гексана в бензол. [c.347]

    Каталитическая дегидроциклизация парафиновых углеводородов. [c.90]

    В каталитическом риформинге применяют гетерогенные бифункциональные катализаторы. Эти катализаторы содержат металлы (платину, платину и рений, платину и иридий), которые инициируют реакции дегидрирования и гидрирования. Носителем катализаторов служит промотированный галогенами оксид алюминия, который обладает кислотными свойствами и катализирует реакции изомеризации и крекинга углеводородов. На катализаторах риформинга также протекают реакции дегидроциклизации парафиновых углеводородов. [c.348]

    О механизме каталитической дегидроциклизации парафиновых углеводородов. С к а р ч е н- [c.354]

    Основными реакциями каталитического риформинга бензинов являются дегидрирование шестичленных нафтеновых углеводородов, дегидроизомеризация алкилиро-ванных пятичленных нафтеновых углеводородов и дегидроциклизация парафиновых углеводородов. Одновременно протекают реакции деструкции и изомеризации парафиновых углеводородов, деалкилирования ароматических углеводородов, и на поверхности катализатора отлагается кокс. [c.97]

    Водород в процессе каталитического риформинга бензинов образуется в результате дегидрирования нафтеновых углеводородов, а также частично при дегидроциклизации парафиновых. Протекающий при каталитическом риформинге гидрокрекинг парафиновых углеводородов приводит к частичному поглощению образовавшегося водорода и получению газообразных углеводородов. Усиление основных реакций и ослабление реакций гидрокрекинга не только способствуют повышению октанового числа и выхода бензина, но одновременно увеличивают выход водорода. [c.24]

    Стехиометрический выход водорода в основной реакции дегидрирования нафтеновых углеводородов Са составляет 5,3%, а при дегидроциклизации парафиновых углеводородов Сз он еще выше и составляет 7%. Практический выход Нз в процессе каталитического риформинга в несколько раз ниже стехиометрического, но по мере совершенствования технологии процесса и внедрения новых модификаций его выход водорода растет. [c.24]

    Кроме высокооктанового бензина и ароматических углеводородов при каталитическом риформинге в результате дегидрогенизации и дегидроизомеризации нафтеновых и дегидроциклизации парафиновых углеводородов образуется водородсодержащий газ. Он содержит водорода 70—90 объемн. % или 0,7—2,2 вес. % от перерабатываемого сырья. Большое количество газа и высокая концентрация в нем водорода позволяют использовать этот газ для гидрогенизационной переработки нефтяных фракций, а также [c.8]

    Было найдено, что скорость реакции каталитической дегидроциклизации на хромовых катализаторах парафиновых углеводородов возрастает по мере повышения их молекулярного веса. Например, при 460—470 °С в жидких продуктах дегидроциклизации н-гексана, н-гептана и н-октана ароматических углеводородов содержалось соответственно 17, 26 и 63 вес. % [И, 12]. [c.19]

    Изучение процесса ароматизации при атмосферном давлении на окисных катализаторах показало, что достаточная глубина ароматизации достигается при температуре не ниже 400—500 °С. В этих условиях алюмомолибденовый и алюмохромовый катализаторы не отравляются сернистыми соединениями и дегидроциклизация парафиновых и дегидрирование шестичленных нафтеновых углеводородов протекает достаточно глубоко. Реакций изомеризации парафиновых углеводородов почти не наблюдается. Однако процесс осложняется значительным коксообразованием, особенно в присутствии пятичленных нафтеновых углеводородов. Высокое коксообразование и сравнительно низкие качества получаемого бензина являются дополнительными причинами, лимитирующими применение каталитической ароматизации при атмосферном давлении в промышленных масштабах. [c.20]

    Тем не менее, учитывая невысокий выход легких ароматических углеводородов (главным образом бензола) в процессах каталитического риформинга под давлением водорода, можно предположить, что каталитическая дегидроциклизация концентратов парафиновых углеводородов при атмосферном давлении все же найдет промышленное применение [13, 26—28]. Осуществление такого процесса над окисными катализаторами принципиально возможно в системах с движущимися регенерируемыми катализаторами, непрерывно циркулирующими в замкнутом цикле. [c.20]


    Водородсодержащий газ. Расчеты показывают, что выход водорода в процессе каталитического риформинга при 100%-ной селективности дегидроциклизации парафиновых углеводородов Сз, не сопровождаемой деструкцией сырья, может достигать 7 вес. % от парафиновых углеводородов Се. При селективном дегидрировании нафтеновых углеводородов Сз, также не сопровождаемом реакцией гидрокрекинга, предельный теоретический выход водорода снижается до 5,3 вес. %. [c.58]

    На установках каталитического риформинга можно перерабатывать бензиновые фракции различными путями. На заводах большей мощности желательно осуществлять раздельный риформинг фракций фракции 110—180 " С с целью получения компонента автомобильного бензина и фракции 62—140 С для получения ароматических углеводородов. При ограниченных ресурсах бензиновых фракций на заводе или если предпочтительно иметь одну установку риформинга, производство компонента автомобильного бензина и ароматических углеводородов можно совместить. В этом случае каталитическому риформингу подвергают фракцию 62—180 Технико-экономические расчеты показывают, что при удвоении мощности установки каталитического риформинга удельные капитальные вложения уменьшаются на 30%, а себестоимость 1 т продукта снижается на 10— 1.5%. Технико-экономические показатели процесса риформинга значительно улучшились в последние годы. Наилучшие результаты по увеличению выхода ароматических углеводородов достигнуты путем снижения рабочего давления процесса и применения катализаторов, интенсивно ускоряющих реакции дегидроциклизации парафиновых углеводородов. [c.294]

    В процессе каталитического риформинга протекает ряд последовательных и параллельно текущих реакций, к которым относятся дегидрогенизация шестичленных и дегидроизомеризация пятичленных нафтеновых углеводородов, дегидроциклизация парафиновых и олефиновых углеводородов, изомеризация парафиновых и олефиновых углеводородов, деструктивный распад и гидрирование, конденсация, приводящая к образованию коксовых отложений на катализаторе. [c.95]

    Влияние давления и отдельных реакций па образование и расход водорода при каталитическом риформинге прямогонного бензина (фр. 81—204 °С с исходным содержанием парафиновых углеводородов 64 объемн. %) показано на рис. 66 и 67. Отчетливо видна роль реакций дегидроциклизации парафиновых углеводородов и дегидрирования нафтеновых в образовании водорода. Количество водорода, образующегося за счет дегидрирования нафтенов, возрастает с повышением жесткости процесса, но незначительно, поскольку дегидрирование нафтенов протекает относительно легко. [c.97]

    За рубежом также был проведен большой комплекс исследований, и в 1940 г. в США была введена в эксплуатацию установка каталитического риформинга, которая начала работать по цикличной схеме гидроформинг. Процесс основан на реакциях дегидрирования нафтеновых углеводородов и частично протекающих реакциях дегидроциклизации парафиновых углеводородов его осуществляют под давлением водорода в присутствии окисных катализаторов [26—29]. В Германии в период второй мировой войны были введены в эксплуатацию установки риформинга над окисным алю-момолибденовым катализатором (процесс ДНД) [30]., [c.10]

    Тепловые эффекты процесса. Тепловой эффект каталитического риформинга определяется глубиной протекания реакций дегидрирования нафтеновых углеводородов, дегидроциклизацией парафиновых углеводородов и гидрокрекингом, главным образом, парафиновых углеводородов. Остальные реакции в связи с малыми удельными их значениями в процессе в тепловом балансе могут не учитываться. Реакции дегидрирования и дегидроциклизацин протекают с поглощением тепла, реакции гидрокрекинга — с выделением тепла. Суммарный тепловой эффект будет определяться соотношением глубин протекания этих реакций [67, 68]. [c.40]

    При каталитическом риформинге протекают преимущественно реакции дегидрогенизации нафтеновых углеводородов и дегидроциклизации парафиновых углеводородов, в результате чего получаются ароматические углеводороды и водород, например  [c.75]

    Ароматические углеводороды, также имеющие весьма обширные области применения, могут быть получены пирогенетичес-ким разложением нефтесырья, каталитическим дегидрированием шестичленных циклановых углеводородов и превращением пятичленных цикланов в шестичленные с последующим их дегидрированием или каталитической дегидроциклизацией парафиновых углеводородов. [c.15]

    В каталитическом риформинге применяют гетерогенные бифункциональные катализаторы. Эти катализаторы содержат металлы (платину, платину и рений, платину и иридий), которые катализируют реакции дегидрирования и гидрирования. Носителем катализаторов служит промотированный галогенами оксид алюминия, обладающий кислотными свойствами и катализирующий реакции изомеризации и крекинга углеводородов. На катализаторах риформинга протекают также реакции дегидроциклизации парафиновых углеводородов. В отечественной промышленности используют алюмоплатиновые катализаторы АП-56 и АП-64, которые содержат соответственно 0,65% и 0,64% платины, нанесенной на у-А120з. [c.385]

    Каталитическая дегидроциклизация парафиновых углеводородов осуществляется в присутствии эффективного катализатора. Установлено, что дегидроциклизация на алюмохромовом катализаторе в значительной степени зависит от давления при низких давлениях степень превращения сырья повышается. На алюмомолиб-деновых катализаторах глубина превращения при высоких и низких давлениях примерно одинакова. В присутствии платинового катализатора возможны два механизма дегидроциклизации непосредственное образование ароматических углеводородов из парафиновых образование шестичленных нафтенов с их последующей [c.132]

    Парафиновые углеводороды, имеющие в цепи шесть и более атомов углерода, способны в присутствии ряда катализаторов превращаться в ароматичесмие углеводороды с одновременным отщеплением водорода. Эта реакция получила название каталитической дегидроциклизации парафиновых углеводородов. Строение полученных ароматических углеводородов непосредственно связано со строением исходных парафиновых углеводородов. Так, н-гексан образует бензол, н-гептан — толуол, н-октан образует смесь о-ксилола и этил-бензол.а, 2,5-диметилгексан (диизобутил) превращается в п-ксилол и т. д. Реакция каталитической ароматизации парафиновых углеводородов была открыта советскими химиками. В присутствии платинированного угля, как показали в 1936 г. Б. А. Казанский и А. Ф. Платэ, эта реакция протекает при температуре около 300°. В 1953 г. Б. А. Казанский [c.65]

    Каталитическая дегидроциклизация парафиновых углеводородов осуществляется в присутствии эффективного катализатора. В настоящее время изучено большое количество катализаторов. В основном это окислы металйов, относящихся к трем группам периодической системы — VI (хром, молибден), V (ванадий) и IV (титан). Наибольшее применение имеют окиси хрома и молибдена на носителях в присутствии добавок (платина, палладий, церий и кобальт). Установлено, что дегидроциклизация на алюмо-хромовом катализаторе в значительной степени подвержена влиянию давления при низких давлениях степень превращения сырья повышается. В противоположность этому, на алюмомолибденовых катализаторах степени превращения при высоких и низких давлениях примерно одинаковы. [c.154]

    Понятно, что при составлении математического описания реального процесса всегда используется ряд допущений и предположений, которые могут оказаться неточными при изменении размера реактора или условий осуществления процесса. Например, основывающаяся на экспериментальных данных форма кинетического уравнения (описание) реакции дегидроциклизации парафиновых углеводородов, предложенная Питкетли и Стейнером [10], отличается от приведенной в работе [11]. Шесть различных форм кинетических уравнений для каталитического крекинга кумола предложены в работах Оболенцева и Грязева [12], Баллод и др. [13], Панченкова и Топчиевой [14], Корригана и др. [15], Вейса и Пратера [16], Планка и Найса [17]. [c.136]

    Промышленный процесс каталитического риформинга протекает при 470—550 °С. В этих условиях все углеводороды, присутствующие в исходном сырье, претерпевают те или иные превращения. Ароматические углеводороды образуются преимущественно в результате реакции дегидрирования шестичленных циклоалкановых углеводородов и дегидроизомеризации пятичленных алкилированных циклоалкановых углеводородов. В меньшей степени ароматизация является следствием дегидроциклизации парафиновых [c.173]

    При лабораторных исследованиях каталитических процессов одной из серьезнейших трудностей является поддержание устойчивой активности катализатора в течение длительного, времени. При переходе от лабораторных исследований к промышленным процессам не менее важными часто оказываются и некоторые другие факторы. Например, поскольку реакции, протекающие при риформипге (за исключением реакции изомеризации), включают образование ароматических углеводородов в результате сильно эндотермических реакций дегидроциклизации парафиновых п. дегидрирования нафтеновых углеводородов, проблема поддержания требуемой температуры реакции имеет прп проектировании не менее важное значение, чем проблема длительного сохранения высокой активности катализатора. [c.216]

    Таким образом, основной реакцией, протекающей наиболее полно и избирательно при каталитическом риформинге, является дегидрирогенизация шестичленных нафтенов. Второй важнейшей реакцией ароматизации является дегидроциклизация парафиновых углеводородов. Повышение температуры и снижение давления увеличивает термодинамически возможную глубину дегидрирования и дегидроциклизации, однако высокие температуры промышленного процесса каталитического риформинга (480-540°С) вызывают неизбежные в этих условиях реакции крекинга. Образующиеся осколки. молекул [c.11]

    Бензол и его гомологи в наибольшем количестве получают и нефтяного сырья при каталитическом риформинге прямогонны бензинов, а также бензинов гидрокрекинга. Каталитический pi форминг проводится преимущественно на алюмоплатиновых кат лизаторах. при температурах около 500°С, давлении водород 15—50 кгс/см и рециркуляции водородсодержащего газа [7]L Пр этом ароматические углеводороды образуются как за счет дегиг рирования нафтеновых углеводородов, так и, в меньшей степен за счет дегидроциклизации парафиновых углеводородов. Удел ный вес последних реакций в ближайшие десятилетия, по-вид1 мому, возрастет. [c.113]

    Риформинг. Наибольшее распространение получил каталитический риформинг. При каталитическом риформинге происходит обра вание ароматических углеводородов благодаря реакциям дегидрогенизации нафтеновых углеводородов, дегидроциклизации парафиновых углеводородов, изомеризации пятичленных нафтенов в шестичленные с последующей дегидрогенизацией их в ароматические. Одновременно при этом протекают реакции гидрокрекинга и изомеризации парафиновых углеводородов. [c.475]

    В работе [32] проведено сравнительное исследование каталитической активности металлического хрома,а также карбидов СгдС2 и Сг,Сд при ароматизации к-гексана ик-октана. Было обнаружено отсутствие каталитической активности у хрома и ароматизирующая способность у обоих карбидов хрома, причем Сг Сз оказался более активным. Отсутствие каталитической активности у хрома может быть связано с тем обстоятельством,что,несмотря на наличие у хрома формально средней по величине акцепторной способности, при окружении его соседними атомами в кристаллической решетке металла осуществляется образование стабильной конфигурации Принятие я-электронов,например водорода в реакциях дегидрогенизации,при этом сильно затруднено или вообще невозможно, что и показано на опыте [33] значительно легче может происходить отдача х-электронов и появляться каталитическая активность в соответствующих реакциях. При образовании карбидов хрома эта стабильная конфигурация нарушается и происходит донорно-акценторное взаимодействие между атомами хрома и углерода, которое сводится к передаче внешних (главным образом 4 ) электронов хрома на коллективизацию с р-электронами углерода. При этом в связи с относительно небольшой величиной для хрома и высоким ионизационным потенциалом атомов углерода вероятен не только переход х-электро-нов хрома в направлении остова атома углерода, но и частичное нарушение 3( -конфигурации с соответственным повышением акцепторной способности хрома. С повышением относительного содержания углерода в карбидных фазах хрома увеличивается вероятность образования связей между атомами углерода (что следует также из усложнения структурных мотивов атомов углерода при увеличении отношения С/Сг), которые стремятся в пределе к образованию устойчивой конфигурации типа характерной для алмаза (что эквивалентно резкому повышению ионизационного потенциала атомов углерода), и в конечном счете ко все большей возможности нарушения 3 -конфигурации атомов хрома. Это вызывает резкий рост каталитической активности при переходе от хрома к его карбидам, в которых атомы углерода образуют цепи. В случае окиси хрома, вследствие высокого ионизационного потенциала кислорода, коллективированные электроны хрома и кислорода резко смещены в направлении атомов кислорода, что содействует нарушению устойчивой конфигурации -электронов хрома, повышает акцепторную способность его остова и вызывает высокую каталитическую способность окиси хрома, например в реакциях типа дегидроциклизации парафиновых углеводородов. Исходя из этого окислы вообще должны обладать относительно высокими каталитическими свойствами, особенно низшие окислы переходных металлов, так как высшие окислы, как правило, являются полупроводниками с большой шириной запрещенной зоны, затрудняющеь электронные переходы. Последнее относится и к некоторым другим тугоплавким фазам в областях их гомогенности, когда при уменьшении содержания неметалла в пределах этих областей появляются энергетические разрывы, как это происходит, например, для нитридов титана и циркония [33—35]. [c.243]

    Штейнер [147] детально рассмотрел материалы по каталитическому превращению парафиновых и олефиновых углеводородов над окисными катализаторами при атмосферном давлении. Некоторые особенности реакции и ее полезность при каталитическом риформинге обсуждались Гензелем [93]. Хенш [94] сделал обозрение работ, использовавших реакцию дегидроциклизации в синтезе ароматических соединений. [c.500]

    Алюмохромовые (катализаторы применяются при каталитической дегидроциклизации (ароматизации) парафиновых углеводородов, при дегидротенизадии циклогексановых углеводородов, при ароматизации нефтяных ф ракций, а также при дегидрогенизации бутана, изопентана и т. п. Описанный ниже способ приготовления алюмохромового катали-затор.а, активированного добавкой окиси калия, является наиболее простым, хотя катализатор при этом получается недостаточно стойким. Способ заключается в пропитке окис я алюминия сначала раствором хромовой кислоты, а затем раствором поташа. Восстановление катализатора происходит в-каталитической печи за счет первых порций дегидрируемого углеводорода. [c.60]


Смотреть страницы где упоминается термин Каталитическая дегидроциклизация парафинов: [c.13]    [c.4]    [c.127]    [c.5]    [c.56]    [c.243]    [c.22]    [c.66]   
Смотреть главы в:

Химия нефти -> Каталитическая дегидроциклизация парафинов




ПОИСК





Смотрите так же термины и статьи:

Дегидроциклизация

Каталитическая С- и Сс-дегидроциклизация

Каталитическая дегидроциклизация (ароматизация) парафиновых углеводородов

Каталитическая реакция дегидроциклизации парафиновых

Каталитическая циклизация парафинов (дегидроциклизация)



© 2025 chem21.info Реклама на сайте