Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотометрическое определение хрома в алюминии

    ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ХРОМА В АЛЮМИНИИ i [c.280]

    М НС1 [1038]. При определении Ga, In и Т1 в биологических объектах микроэлементы извлекали ДЭЭ — Ga и In в виде роданидов, TI — в виде бромидного комплекса. Определение проводили соответственно при 417,2 451,1 и 377,8 нм [1860]. Пламенно-фотометрическое определение хрома в водах [1677] и солях алюминия [1675] включало извлечение этого элемента в шестивалентном состоянии из раствора ПС1 метилизобутилкетоном. [c.320]


    Образует соли (типа аммиакатов), например с титаном (IV) и цирконием (IV). Применяют для фотометрического определения титана (IV) в интервале кислотности от 0,1 до 5—6 н. Определению не мешают ванадий, молибден, вольфрам, тантал, ниобий, железо, кобальт, никель, хром, марганец, алюминий, цинк, кадмий и ртуть. [c.134]

    Разработаны методики фотометрического определения кальция с хлорфосфоназо III в борной кислоте, двуокиси свинца, минеральных водах [344], сплавах на основе алюминия [200] и железа [631], легированных сталях [632] хромо-никелевых сплавах [199]. [c.95]

    При помощи 8-оксихинолина алюминий определяют либо непосредственно, либо путем косвенных реакций. Для повышения чувствительности и избирательности реакции было предложено экстрагировать образующийся оксихинолинат алюминия органическими растворителями [12]. Интервал pH, при котором экстракция оксихинолината является наиболее эффективной, равен 5—6. Чувствительность реакции значительно ниже, чем при применении других органических реагентов на ион алюминия, и равна 0,4 мл А1. Характерно, что в большинстве опубликованных работ рекомендуется производить измерение интенсивности окраски не фотометрическим методом, а методом стандартных серий. Однако принципиально возможны и фотометрические измерения окраски желтого экстракта. В оиределенном интервале концентраций (в нашем случае 12— 60 у в 10 жл общего объема) наблюдается линейная зависимость между содержанием алюминия и оптической плотностью раствора. Железо, хром и ряд других катионов мешают определению алюминия. Для их удаления рекомендуется чаще всего электролиз с ртутным катодом или же предварительная экстракция роданидного комплекса железа смесью эфира и тетрагидро-фурана. Однако все эти методы являются трудоемкими и неудобными для массовых определений. Мешающее действие железа не может быть устранено тиогликолевой и аскорбиновой [c.239]

    Одно из последних усовершенствований в области быстрого анализа пород, предложенное Ингамеллсом, состоит в сплавлении породы с безводным метаборатом лития ЫВОг. Разложение навески 0,1—0,2 г достигается полностью в течение 10 мин, затем раствор плава в азотной кислоте можно использовать для фотометрического определения кремния, алюминия, общего железа, титана, марганца и фосфора, а также никеля и хрома (которые впервые появились в схеме для быстрого анализа пород). [c.60]


    Метиловый фиолетовый. Этот краситель, также принадлежащий к группе трифенилметановых, образует с Sb lg ионный ассоциат, экстрагирующийся органическими растворителями. Чувствительность экстракционно-фотометрического определения Sb с его применением ниже, чем с применением бриллиантового зеленого и кристаллического фиолетового при использовании бензола е = 5,4-10 при Яшах = 608 нм (2 Л/HG1) для H lg е = = 8,1-10, Ятах = 590 нм (4 М НС1) [327]. Несмотря на указанный недостаток, метиловый фиолетовый довольно часто используется для определения Sb в различных материалах. С его применением определяют Sb в алюминии [254], жаропрочных сплавах [497], железе, чугуне, сталях, железных рудах и ферросплавах [84, 444, 975, 1406], кадмии [456], меди и ее сплавах [93, 341, 359, 489, 490], молибдене и ферромолибдене [401, 645, 655], никеле и его сплавах [502], оловянных рудах и продуктах их переработки [596], припоях [277], рении [645], свинце [1105, 1106], таллии [320], титане [498], хроме и его сплавах [502, 545], цинке, цинковых сплавах, злектролитах и растворах цинкового производства [332, 456, 700], тонких напыленных слоях стибнита [63]. [c.49]

    Фотометрическое определение в рудах в форме сульфата [745]. Навеску руды разлагают смесью азотной и соляной кислот и раствор выпаривают с серной кислотой. Осаждают медь раствором тиосульфата натрия. При этом железо восстанавливается до двухвалентного состояния. Измеряют оптическую плотность полученного раствора Со804 (после фильтрования) при 520 ммк. Не мешают мышьяк, сурьма, магний, алюминий, кальций, ци к, кадмий, натрий, калий и титан. Допустимо до 0,5 мг/мл марганца и 0,3 мг/мл вольфрама. Мешают хром и ванадий собственной окраской. При больших количествах никеля оптическую плотность измеряют при двух длинах волн— при 400 и 520 ммк и затем вычисляют содержание кобальта. [c.180]

    Можно было бы привести примеры концентрирования, включающие использование и других экстрагентов. Микроколичества галлия извлекали из растворов НС1 с помощью ДЭЭ (или ДИПЭ) при определении его в бокситах [635], индии высокой чистоты [637], различных горных породах [633,] бутилацетатом — при определении в алюминии высокой чистоты [665] и в цинке [660]. Железо концентрировали амилацетатом из H I при определении его в Ti l4[1836], трибутилфосфатом из роданидного раствора при определении в металлическом никеле [800, 802]. Таллий, содержа щийся в рудах, выделяли бутилацетатом из 1 ilf НВг в присутствии свободного брома. Тантал экстрагировали из фторидных растворов МИБК, определяя его в серебре [1548] и циклогексаноном — при определении в цирконии [1543]. Иодидные комплексы РЬ, d, In, Bi, u и Sb концентрировали МИБК нри определении названных элементов фотометрическими методами в металлическом железе, кобальте, цинке, хлоридах алюминия и хрома н других объектах [610]. [c.313]

    Каждый органический реагент образует экстрагируемые внутрикомплексные соединения только с определенной группой металлов. В общем можно ожидать [562, 7931, что органические реагенты, которые имеютОН-груп-пу (например, Р-дикетоны, трополоны и др.), будут особенно хорошо реагировать с металлами, которые образуют устойчивые гидроксокомплексы [например, с цирконием, гафнием, ураном( У), плутонием(1У) и др.1 реагенты с 5Н-группой (дитизон и его производные, диэтилдитио-карбаматы и т. п.) будут реагировать преимущественно с металлами, которые образуют устойчивые и нерастворимые сульфиды (ртуть, серебро, медь и др.). Поэтому очевидно, что металлы, которые образуют экстрагируемые внутрикомплексные соединения, могут быть отделены от любого избытка других металлов, дающих неэкстра-гируемые соединения, или от металлов, которые вообще не взаимодействуют с реагентом. Так, например, металлы, образующие экстрагируемые дитизонаты — ртуть, серебро, медь, цинк, кадмий и др., — легко можно отделять от любых количеств металлов, которые не экстрагируются растворами дитизона [например, от алюминия, хрома(У1), молибдена(У1), урана(У1), редкоземельных элементов]. После отделения всех металлов, образующих дитизонаты, оставшиеся металлы можно экстрагировать, используя другой органический реагент. Например, многие элементы, мешающие фотометрическому определению алюминия в виде его 8-оксихинолината, могут быть отделены предварительной экстракцией в виде дитизонатов, диэтилдитиокарбаматов, 2-метил-8-оксихинолинатов и т. д. (см. главу 5). [c.62]

    За последние годы предложены новые довольно высокочувствительные и селективные системы для определения микроколичеств серебра. Так, Дагнел и Уэст [27, 28] предложили для фотометрического определения серебра тройную систему, основанную на взаимодействии 1,10-фенантролина, бромпирогалло-вого красного и одновалентного серебра. Авторами установлено соотношение компонентов в возникающем комплексе [Ag(/оЛеп) г] 2 BPR, где ркеп — 1,10-фенантролин, ВРК—бром-пирогалловый красный. Максимум поглощения комплекса находится при 635 нм, коэффициент молярного погашения 51 ООО, область существования комплекса pH 3—10. Оптическая плотность подчиняется закону Бера в интервале концентраций серебра 0,02—0,2 мкг мл. При увеличении концентраций реагирующих веществ и при стоянии выпадает осадок комплексного соединения.. В присутствии комплексообразователей (комплексона III, перекиси водорода, фторидов) определению серебра не мешают стократные количества многих катионов, а также ацетаты, бромиды, карбонаты, хлориды, цитраты, фториды, нитраты, оксалаты, сульфаты, фосфаты. Сильно мешают цианиды и тиосульфаты. Из катионов не мешают ионы алюминия, бария, висмута, кальция, кадмия, трехвалентного церия, трехвалентных хрома и железа, двухвалентных кобальта, меди, ртути, магния, марган- [c.49]


    Электролизом на ртутном катоде отделяются следующие металлы Ре, Сг, Со, N 1 Си, 2п, Мо, Сс1, 5п, РЬ, В , Н , Т1, 1п, Ga, Ge, Ag, Аи, Pt, Рс1, КЬ, 1г, Ке. Не отделяются А1, Т , 2г, V, и, ТЬ, Ве, NЬ, Та, W, Р, Аз, 8с, У, РЗЭ, Mg, щелочные и щелочноземельные металлы. Марганец отделяется неполностью, часть его окисляется до МпОа и выделяется на аноде, может также окислиться до Мп04", окрашивая раствор в малиновый цвет. Дюбель и Флюршютц [689] считают, что если во время электролиза в электролит добавить несколько капель 30%-ной перекиси водорода, то достигается количественное отделение марганца. Хром медленно удаляется при электролизе. Поэтому при анализе сталей, содержащих > 5% хрома, большую часть его рекомендуется отделять до электролиза в виде хлорида хромила [555]. Небольшая часть железа всегда -остается в электролите. Однако эти остающиеся количества железа не мешают во многих фотометрических методах определения алюминия, если восстановить железо аскорбиновой кислотой до Ре (П). В электролите могут остаться также следы хрома и молибдена. [c.191]

    Фотометрический метод с применением хромазурола С. Определение основано на образовании окрашенного в фиолетовый цвет соединения алюминия схро-мазуролом С при pH 5,7—6,0. Железо, титан, хром и другие катионы отделяют гидроксидом натрия. Определяют 5— 24 мкг АР+ в 50 мл раствора. [c.347]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Ауриновый краситель не является специфическим реагентом на, алюминий многие катионы и анионы мешают этой реакции (главным образом железо, бериллий, кремний, медь, хром, метафосфаты и фториды ). Влияние посторонних ионов уменьшается при измерении интенсивности окраски алюминиевого лака в слабош,елочпых растворах (pH = 7,1—9). В этих условиях менее интенсивна также и окраска самого красителя, что имеет известное преимуш ество при определении очень малых количеств алюминия визуальным способом. Однако высокие фотометрические свойства лака, проявляющиеся в слабокислых растворах, содержащих защитный коллоид, часто имеют более существенное значение, чем увеличение селективности реакции в щелочных растворах. [c.576]

    В работе [25] предложен экстракционно-фотометрический метод определения следовых количеств ртути с бриллиантовым золеным. Экстрагируют комплексное соединение бензолом (pH от 0,7 до 1,5). Линейность калибровочного графика соблюдается в интервале 0—20 мкг Hg в 10 мл (е = 1 10 ), определению не мешают миллиграммовые количества кадмия, медн, свинца, олова, цинка, брома, хлора. Сильно мешают железо, перхлорат- и роданид-ионы. В другой работе [26] экстрагируют комплексное соединение ртути с 2-меркаптобепзойпой кислотой и измеряют светопо-глощение экстракта в УФ-области. Это дает возможность определять ртуть в присутствии 100-кратных количеств кадмия, свинца, таллия, марганца, алюминия, щелочноземельных металлов, хрома, роданид-ионов. Мешающее влияние 10-кратного количества кобальта и цинка устраняют введением роданид-ионов медь маскируют комплексоном III. [c.120]

    Другой метод определения — ионообменный хроматографический метод — основан на сорбции хелатного аниона кобальтнитрозо-R Пропускают раствор хелатного соединения кобальта в хлорной кислоте через колонку, заполненную окисью алюминия, промытой хлорной кислотой. Хелатное соединение кобальта и избыток реагента сорбируются на окиси алюминия, вытесняя перхлорат-ион. Другие металлы, которые не взаимодействуют с нитрозо-Н-солью, проходят через колонку. Избыток реагента затем вымывают горячей разбавленной азотной кислотой. Наконец вымывают комплекс кобальта разбавленной серной кислотой и определяют кобальт фотометрически. Этот метод (указания к проведению которого приведены ниже) можно применить для определения кобальта в присутствии меди, цинка, никеля и хрома, хотя в присутствии никеля и хрома получаются, по-видимому, завышенные результаты, если отношение содержания хрома и никеля к содержанию кобальта неблагоприятно. Так, при содержании кобальта в стали, равном 0,084 (при соотношении Сг Ni = = 18 9), в результате анализа получено в среднем значение 0,092% Со. В железной болванке, содержащей 0,006% кобальта, при анализе было получено 0,005%. [c.385]


Смотреть страницы где упоминается термин Фотометрическое определение хрома в алюминии: [c.170]    [c.170]    [c.150]    [c.160]    [c.20]   
Смотреть главы в:

Методы анализа веществ высокой чистоты -> Фотометрическое определение хрома в алюминии

Методы анализа веществ высокой чистоты -> Фотометрическое определение хрома в алюминии




ПОИСК





Смотрите так же термины и статьи:

Алюминий фотометрическое



© 2024 chem21.info Реклама на сайте