Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение и содержание смол в крекинг-бензине

    В связи с внедрением в промышленности новых процессов переработки, а также изменением требований к ассортименту и качеству нефтепродуктов предлагается пересмотреть программу исследования нефтей с целью расширения и уточнения ее [21], Расширенной программой исследования нефтей предусматривается определение кривых разгонки нефти, устанавливающих зависимость выхода фракций от температуры кипения и определяющих их качество давления насыщенных паров содержания серы асфальтенов смол силикагелевых парафинов кислотного числа коксуемости зольности элементного состава основных эксплуатационных свойств топливных фракций (бензинов, керосинов, дизельного топлива) группового углеводородного состава узких бензиновых фракций выхода сырья для каталитического крекинга, его состава и содержания в нем примесей, дезактивирующих катализатор потенциального содержания дистиллятных и остаточных масел качества и выхода остатка. [c.35]


    СМОЛЫ ФАКТИЧЕСКИЕ В БЕНЗИНАХ. Фактическими (в отличие от потенциальных) называют смолы, к-рые уже образовались в крекинг-бензине к моменту их определения и, кроме того, образуются при выпаривании бензина под струей воздуха. Содержание этих смол в бензинах не является абсолютным, т. к. зависит от метода определения. Как правило, чем выше т-ра подаваемого воздуху при выпаривании бензина, тем меньше получается смол. (См. фактические смолы в топливах). [c.590]

    При крекинге на цеолитсодержащих катализаторах с высокой активностью влияние фракционного состава сырья при равных прочих характеристиках не очень значительно. Обычно по мере облегчения сырья имеет место рост выхода углеводородов Сз—С4 и бензина при снижении выхода водорода и кокса. Вовлечение остаточных фракций до определенного их содержания (14—15% (об.)] в вакуумный дистиллят повышает октановое число бензина и его выход в расчете на нефть. Ограничивающими факторами по концу кипения сырья крекинга являются содержание смол, асфальтенов, металлов и коксуемость. [c.111]

    ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ФАКТИЧЕСКИХ СМОЛ В КРЕКИНГ-БЕНЗИНАХ, ЛЕГКИХ ПРОДУКТАХ ПИРОЛИЗА, КЕРОСИНАХ И ДИЗЕЛЬНЫХ ТОПЛИВАХ [c.668]

    Содержание растворимых смол определяется путем быстрого испарения крекинг-бензинов в условиях, при которых не происходит дальнейшего окисления и смолообразования. Быстрое испарение крекинг-бензинов в струе пара как будто является операцией, полностью удовлетворяющей вышеупомянутым условиям. Этот метод может применяться для определения растворимых смол. Ганн, Фишер и Блек-вуд [25] показали, что в этом определении струя пара может быть заменена струей воздуха без заметного окисляющего действия при условии, если время опыта будет коротким. Испытание производится в фарфоровой или стеклянной чашке. Применение металлических чашек не рекомендуется вследствие каталитического действия многих металлов на окисление углеводородов. [c.313]

    ОПРЕДЕЛЕНИЕ И СОДЕРЖАНИЕ СМОЛ В КРЕКИНГ-БЕНЗИНЕ [c.636]

    Содержание смол в крекинг-бензине колеблется в весьма широких пределах в зависимости от его происхождения, продолжительности хранения, главное же — от степени его очистки. Ниже приводятся некоторые данные по этому вопросу на основе определения смол методом выпаривания в чашке. [c.637]

    Как было указано, содержаь>ле смол, полученное испытанием медной чашке, может давать некоторую оценку поведения и стаб1шь-ности крекинг-бензинов при хранении, особенно в сочегании с определением индукционного периода. Креклнг-бензин, имеющий очень низкое содержание смол, при испытании в медной чашке, обычно бывает стабильным при хранении. С другой стороны, крекинг-бензины с высоким содержанием смол при этом же испытании могут быть или нестабильными, или достаточно стабильными при хранении. Таким образом, для лучшей оценки стабильности при хранении необходимо определение индукционного периода. Смолообразование крекинг-бензинов в моторах не зависит от количества смол, полученных при испытании в медной чашке. Бензины, имеющие высокое содержание смол при испытании в медной чашке, часто удовлетворительны в качестве моторного топлива и не образуют смол, оседающих в моторе. [c.315]


    Лабораторный контроль установки каталитического крекинга с пылевидным катализатор(зм заключается в проверке качеств сырья, катализатора и вырабатываемых прсТдуктов газа, бензина, легкой и тяжелой флегмы. Анализ сырья, поступающего на установку, заключается в определении плотности, фракционного состава, группового химического состава, содержания смол и его коксуемости. Коксуемость сырья является одной из важных характеристик, так как ее повышение увеличивает процент кокса, отлагающегося на поверхности катализатора, что вызывает необходимость в снижении производительности установки. [c.206]

    Существует некоторая зависимость между содержанием растворимых смол в крекинг-бензинах и смолообразованием в моторах. Вурхис и Эйзингер [54] и Ганн, Фишер и Блеквуд [25] показали, что бензины, содержащие в 100 см до 10 мг растворимых смол, определенных ис- [c.313]

    Содержание потенциальных смол может быть определено окислением образца бензина в специфических условиях. Согласно Вурхису и Эйзингеру [54] определение выполняют следующим образом 25 см крекинг-бензина нагревают на паровой бане в течение час. в колбе на 500 см , наполненной кислородом. После нагреьания аппарат охлаждают, окисленный образец переносят в фарфоровую или стеклянную чашку и выпаривают на паровой бане. Стабильные крекинг-бензины, которые могут храниться не менее года без значительного смолообразования, дают при этом 8—40 мг потенциальных смол на 100 см бензина, тогда как нестабильные бензины могут образовать более 1000 мг. Часто содержание потенциальных смол, полученное этим методом, приближается к содержанию смол, полученному при определении в медной чашке. [c.314]

    С другой стороны, Кассар показал, что перекиси, добавленные к крекинг-бензинам, действительно ускоряли смолообразование. Бензины, содержащие перекиси, могут быть омоложены , т. е. восстанавливается индукционный период, после промывания каустиком, удаляющим образовавшиеся перекиси. Моррелл, Драйер, Лоури и Эглофф [33] окисляли крекинг-бекзины кислородом при 100° С и подтвердили, что перекиси являются первыми продуктами окисления. Когда содержание перекисей было достаточно велико, содержание смол при определении в медной чашке и методом воздушной струи повысилось. Те же самые авторы показали позже [12], что альдегиды и кислоты, растворимые в бензине, образуются в более поздних стадиях хранения. Относительное количество перекисей, альдегидов и кислот, растворимых в бензине, постепенно увеличивается с удлинением срока хранения. Смолы начинают появляться, как только образовалось значительное количество перекисей и раньше сколько-нибудь значительного образования альдегидов и кислот, растворенных в бензине. Таким образом, смолообразование тесно связано с перекисями. [c.320]

    Мандельбаум [55] указывает, что о рациональности применения процесса Грея можно судить по масштабу его применения в промышленности, который со Времени его появления в 1924 г. уже к 1933 г. достиг 16 тыс. т в день крекинг-бензина. Он описывает процесс Грея следующим образом 1) бензиновая фракция выделяется из крекинг-дестиллата 2) выделенная фракция в парообразном состоянии приходит в соприкосновение с адсорбентом, обладающим способностью селективно полимеризовать нежелательные углеводороды 3) с адсорбента непрерывно удаляют обработанные пары и образовавшиеся полимеры 4) от обработанных паров отделяют полимеры >) наконец, обработанные пары конденсируют. Применяют адсорбенты с величиной зерна от 60 до 90 иди от 30 до 60 меш последние наиболее эффективны. Наилучший материал для обра-ботки — это фуллерова земля и аналогичные вещества. Реакция усиливается при повышении температуры и при повышении давления общие выходы, выраженные количеством бензина на 1 т адсорбента, обработанного до определенных стандартных качеств, приблизительно пропорциональны абсолютному давлению. Например, на двух соседних установках производилась очистка в одном случае под давлением 10 ат, а в другом 1,7 ат. Первая перерабатывала 950 т крекинг-бензина на 1 т фуллеровой земли, тогда как вторая установка с меньшим давлением не давала желаемого эффекта при переработке более 200—250 т т I т земли. Далее, по данным Мандельбаума, для получения удовлетворительных результатов очистки достаточно сравнительно кратковременной обработки, увеличение продолжительности контакта обычно не улучшает обработки. В башни Грея могут поступать пары, получающиеся непосредственно при крекинге или из установки для вторичной перегонки. Башни можно экспло-атировать последовательно или параллельно предпочтительнее пользоваться последовательным порядком. Если углеводороды поступают в башню Грея непосредственно из крекинг-установки и содержат большое количество газа, то работа адсорбента быстро ухудшается. Поэтому парофазный крекинг-бензин удобнее перерабатывать после конденсации дестиллата при повторной перегонке. Установки Грея конструируют с таким расчетом, чтобы от 5 до 10% получаемого бензина конденсировалось или возвращалось в башню для вымывания полимеров из глины. Бензиновая часть полимеров отпаривается и регенерируется. Цвет и содержание смол в обработанном бензине сохраняются на постоянном уровне, т. е. оказываются стабильными. После переработки приблизительно 150, 450 и 800 т бензина на 1 т глины (в зависимости от вида перерабатываемого бензина) качество обработанного бензина становится неудовлетворительным и содержание смол быстро повышается. Адсорбенты, применяемые в процессе Грея, мало влияют на содержащиеся в бензине сернистые соединения. Это делает необходимой дополнительную обработку крекинг-дестиллатов, содержащих серу. На фиг. 66 изображена схема процесса Грея (Мандельбаум [55]). [c.726]


    Стори, Преваин и Беннетт [85] исследовали смолообразование при выпаривании в медной чашке и пришли к заключению, что смола состоит преимущественно из кислот вместе с неомыливаемым материалом и похожа на поли-меризованные альдегиды, кетоны или окиси. Моррелл, Дриер, Лоури и Эглофф [68] провели дальнейшее изучение образования перекисей, альдегидов, кислот и смол в типичном крекинг-бензине, в частности распределение их между летучей частью окислившегося бензина, смолами, растворенными в ней, и нерастворимыми смолами, осаждающимися после интенсивного окисления. Определялся также элементарный состав самой смолы. Исследование показало, что смола, образующаяся при выпаривании окисленного бензина, богата перекисями, альдегидами и кислотами. Смола, осевшая из бензина в процессе его окисления, очень отличается по составу от растворимой смолы, причем характерной особенностью ее является высокое содержание кислых веществ. Если сравнивать общие количества продуктов окисления во фракциях окисленного бензина, то оказывается, что перекиси обычно находятся в большом количестве в осевшей смоле, альдегиды равномерно распределялись по всем трем частям и кислоты содержались в большом количестве в легкой фракции. Для определения смол исследуемый бензин выпаривали, опыты показали, что перекиси, альдегиды и кислрты образуются гораздо быстрее в медной чашке, чем в стеклянной. Выпаривание досуха в медной чашке приводит к восстановлению или полному разложению перекисей, оставляющих в смоле большие количества альдегидов и кислот. В отношении механизма смолообразования эти авторы пришли к заключению, что при содержании в больших концентрациях перекисей, альдегидов и кислот нельзя сказать, что какое-либо из этих соединений не имеет значения для образования смол. Однако тот факт, что перекиси содержатся в большом количестве, что они концентрируются в смоле в значительно большей степени, чем альдегиды и кислоты, поддерживает ранее сделанное за- [c.737]

    При низкотемпературном крекинге характер исходного сырья оказывает большое влияние, в первую очередь, на скорость крекинга. Сравнивая углеводороды примерно одинакового молекулярного веса, можно их расположить в следующий ряд по относительной легкости разложения парафины, нафтены, ароматические углеводороды (последние труднее всего подвергаются крекингу). При одинаковой температуре высококипящие нефтяные фракции претерпевают крекинг легче, чем низкокипящие фракции, а продукты крекинга крекируются значительно медленнее исходного сырья. Во-вторых, при прочих равных условиях можно ожидать, что природа исходного сырья будет влиять на химический состав получаемого бензина. Например фракция с высоким содеожанием нафтенов может дать бензин с ненормально высоким содержанием нафтеновых и ароматических углеводородов. Правда, состав бензина зависит также в значительной степени и от других факторов, важнейшими из которых являются температура и длительность нагревания. В-третьих, опыт показал, что выход бензина из различного сырья (высококипящих нефтяны.х дестиллатов и тяжелой сырой нефти) зависит iO некоторой степени и от месторождения нефти. В-четвертых, скорость коксообразования по Singer so зависит от химического состава исходного сырья, причем парафинистые нефти образуют меньше кокса, чем беспарафинистые или нефти асфальтового основания при аналогичных условиях крекинга. По данным этого автора керосин практически не образует кокса, соляровое и веретенное масла — очень мало, машинное же и цилиндровое масла — большие количества, а смолы чрезвычайно увеличивают коксообразо-вание. Выход кокса имеет, как будто бы, больше значения для определения деталей крекинг-процесса, чем выход крекинг-бензина (выход последнего бывает одинаковым при определенных температуре и времени контактирования как из тяжелых сырых нефтей, так и из мазута) [c.124]

    Нами ноказано, что метод полухлористой серы, рекомендованный Фарагером, Мореллом и Левиным [35] и пспользованньн для количественного определения непредельных углеводородов в бензинах термического крекинга С. С. Наметкиным, Е. А. Робинзон и В. П. Мартыновой [36], применим для анализа легкого масла и сы()ых ароматических фракций пиролизной смолы. Близкое соответствие количестве11ного содержания [c.379]

    В древесносмольном антиокислителе, служащем для стабилизации крекинг-бензина, определяют по ГОСТ 3181—46 содержание воды, кислотное число, прирост фактических смол при добавлении антиокислителя к бензину и стабилизирующую способность, т. е. способность задерживать происходящее при соприкосновении с воздухом окисление, а следовательно, и осмоление непредельных соединений, содержащихся в крекинг-бензине. Последний показатель является наиболее важным для оценки качества антиокислителя. Вследствие сложности его определения и значительного колебания результатов в зависимости от качества бензина, приме1Няемого при анализе, в последнее время предложено оценивать качество антиокислителя по содержанию в нем ортодиоксибензолов (по методике 71). Это предложение основывается на том, что стабилизирующая способность антиокислителя зависит главным образом от наличия ортодиоксибензолов. [c.165]

    Такое Представление о сущности процесса указывает на значительный прогресс по сравнению со взглядами, господствовавшими 10 лет тому йазад. Однако по многочисленным важным вопросам до сих пор сведений не публиковалось. Нагарообразованию способствуют крекинг-топлива, особенно хвостовые их фракции но наиболее активно способствующие нагарообразованию структуры до сих пор строго не установлены. Обнаружена четкая зависимость между нагарообразованием и реакционной способностью бензина по отношению к п-нитробензолдиазонийфторобо-рату — классическому реагенту, применяемому для качественного определения реакционноспособных олефинов [268]. Обычно считают, что парафиновые и простые олефиновые углеводороды не способствуют нагарообразованию, но сложные диолефиновые, тяжелые ароматические и некоторые нафтеновые углеводороды, как показывают многочисленные экспериментальные данные [243], вызывают обильное нагарообразование. Подобные различия, несомненно, связаны с природой продуктов неполного окисления, прорывающихся через поршневые кольца в картер двигателя, однако химическое строение этих продуктов еще не выяснено. Не выяснен также механизм, в результате которого с повышением температуры в рубашке двигателя нагарообразование уменьшается. Очень сомнительно, что в представленных на рис. 1 опытах [244] уменьшение образования лака на поршне вызывается испарением компонентов, являющихся предшественниками нагара. Поскольку температуру поршня, работавшего с зажиганием-, поддерживали постоянной, самый процесс сгорания и, следовательно, состав прорывающихся в картер газов оставались неизмененными. Не изменялись также параметры, определяющие существующий в картере режим его вентиляция (количество отсасываемых газов), содержание воды и температура. Следовательно, наиболее важным параметром была температура в зоне, в которой изучался процесс нагарообразования, т. е. в зоне юбки поршня. Можно принять, что с повышением температуры растворимость смолистых предшественников лака в масле увеличивается. В этом случае нагарообразование на горячем поршне должно уменьшаться, что и объясняет увеличение лакообразова-ния на более холодном поршне в цилиндре, работавшем с зажиганием. Возможно также, что скорость превращения смолы в нелипкие, подобные коксу, продукты значительно увеличивается с повышением температуры в цилиндре. Роль окислов азота во всем этом процессе еще не ясна. Для ответа на эти и многочисленные другие вопросы, связанные с нагарообразованием в условиях низкотемпературного режима, потребуются дополнительные исследования. [c.20]


Смотреть страницы где упоминается термин Определение и содержание смол в крекинг-бензине: [c.313]    [c.306]    [c.668]    [c.672]    [c.735]    [c.39]    [c.121]    [c.121]   
Смотреть главы в:

Химия нефти -> Определение и содержание смол в крекинг-бензине

Собрание трудов Том 3 -> Определение и содержание смол в крекинг-бензине




ПОИСК





Смотрите так же термины и статьи:

Бензины смола в них

Смола определение



© 2025 chem21.info Реклама на сайте