Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика химических реакций Молекулярность и порядок реакций

    Кинетическая классификация реакций. В химической кинетике реакции разделяют по следующим признакам 1) по числу частиц, участвующих в реакции (молекулярность и порядок реакции)  [c.321]

    С точки зрения кинетики, химические реакции можно классифицировать по м ол е ку л я р н ост и, т. е. по числу молекул, принимающих одновременное участие в элементарном акте химического превращения и по порядку уравнения для скорости реакции, т. е. по порядку реакции, определяемому кинетическим уравнением, которому она подчиняется. Порядок реакции — это сумма показателей степеней в кинетическом уравнении реакции. Чаще всего порядок реакции не совпадает с ее молекулярностью, и стехиометриче-ское уравнение реакции, как правило, не может показать действительный механизм реакции, которая обычно протекает через ряд последовательных стадий. [c.106]


    ОСНОВНЫЕ ПОНЯТИЯ ХИМИЧЕСКОЙ КИНЕТИКИ (ПОРЯДОК РЕАКЦИИ, МОЛЕКУЛЯРНОСТЬ, КОНСТАНТА СКОРОСТИ] [c.150]

    Вследствие многостадийности большинства химических процессов даже случайное совпадение наблюдаемого кинетического закона с законом мономолекулярной, бимолекулярной и т. д. реакций еще не может служить доказательством подлинности того или иного механизма реакции. Поэтому для характеристики кинетики экспериментально изучаемых процессов вводится понятие порядок реакции, принципиально отличное от понятия молекулярность. [c.17]

    Порядок химических реакций определяется по применимости к ним тех или иных форм уравнений кинетики реакций. Порядок реакции равен молекулярности такой реакции, кинетическим уравнением которой она может быть представлена. [c.90]

    Основные научные работы посвящены кинетике газовых химических реакций. Изучал (1893—1899) процессы получения и термической диссоциации иодистого водорода и состояние равновесия системы, что послужило исходным пунктом систематических исследований кинетики образования бромистого (1907—1908) и хлористого (1913) водорода из элементов. Установил (1899) условия проведения, молекулярный порядок и зависимость от материала реакционного сосуда кинетики термической диссоциации иодистого водорода. Вывел уравнение скорости образования бромистого водорода, показав ее зависи.мость от константы равновесия диссоциации молекулы брома. Выдвинул (1913) принцип стационарной концентрации промежуточных продуктов газовых реакций, согласно которому концентрация активных частиц в ходе реакции приобретает постоянное значение вследствие равенства скоростей их генерирования и расходования. Открыл (1913) фотохимические реакции с большим квантовым выходом, что положило начало представлениям о цепных процессах. Объяснил их закономерности передачей по кинетической цепи энергии возбуждения молекул. Объяснил падение активности твердых катализаторов блокировкой их по- [c.64]

    С точки зрения кинетики химические реакции можно классифицировать по молекулярности, т. е. по числу молекул, одновременно участвующих в элементарном акте химического превращения, и по порядку реакции. Порядок реакции равен сумме показателей степеней при концентрациях реагирующих веществ в кинетическом [c.139]


    Большинство химических реакций протекает в несколько стадий. Даже если скорость реакции описывается простым кинетическим уравнением, реакция может состоять из ряда стадий. Одной из задач кинетики является определение промежуточных стадий, потому что только таким путем можно понять, как протекает реакция. Отдельные стадии называются элементарными реакциями. Совокупность элементарных реакций представляет механизм суммарной реакции. При рассмотрении механизма говорят о молекулярности стадий, которая определяется числом реагирующих молекул, участвующих в элементарной реакции. Отдельные стадии механизма называются мономолекулярными, бимолекулярными или тримолекулярными в зависимости от того, одна, две или три молекулы вступают в реакцию на данной стадии. Для элементарных реакций молекулярность (моно-, би- и три-) совпадает с их порядком (соответственно первый, второй и третий), но по отношению к суммарной реакции эти термины не являются синонимами. Например, мономолекулярная стадия механизма имеет первый порядок, но реакция первого порядка не обязательно долл<на быть мономолекулярной, как будет показано ниже (разд. 10.12). [c.292]

    Полученные с помощью описанных методов кинетические кривые используют для расчета таких параметров, как константы скорости, температурные коэффициенты и энергия активации процесса в соответствии с уравнениями формальной кинетики химических реакций. Долгое время считали, что большинство кинетических кривых описывается уравнением первого порядка. Было найдено, что температурный коэффициент процесса равен в среднем 2, а энергия активации меняется от 80 до 150 кДж/моль в зависимости от агента вулканизации и молекулярного строения каучука. Однако более точное определение кинетических кривых и их формально-кинетический анализ, проведенный В. Шееле [52], показал, что во многих случаях порядок реакции меньше 1 и равен 0,6—0,8, а реакции вулканизации являются сложными и многостадийными. [c.243]

    По виду экспериментальных зависимостей W = f (ср(), изображенных на рис. 1 и 2, можно заранее предсказать дробный порядок реакции по всем реагентам парогазовых смесей. Некоторые осложнения вызывают зависимости = f (фхл)- По виду этих зависимостей можно сделать ошибочное заключение о переменном порядке реакции относительно хлоридов. Более детальное рассмотрение показало, что своеобразный ход зависимостей (Фхл) объясняется массообменным торможением осаждения карбидов, которое увеличивается с ростом концентрации тяжелых хлоридов в парогазовых смесях. С ростом концентрации хлоридов возрастают молекулярные веса парогазовых смесей, что существенно снижает коэффициенты диффузии в них [12]. При этом претерпевают изменения и физические свойства смеси газов, которые определяются составом смеси и физическими свойствами компонент. Повышение концентрации хлорида в смеси приводит к увеличению вязкости, а это так же, как и уменьшение коэффициентов диффузии, снижает интенсивность массообмена в ней. В результате этого массообмен существенно повлияет на химическую кинетику процесса, а в предельном случае будет полностью лимитировать скорость осаждения осадков. В подобных случаях порядки реакции относительно реагентов смеси определяются с помощью соотношения следующего вида  [c.25]

    Молекулярность химической реакции не всегда согласуется с зависимостями, которые выводятся на основании уравнения химической реакции. Например, если в бимолекулярной реакции одно из реагирующих веществ находится в большом избытке и концентрация его в процессе реакции меняется настолько несущественно, что этим изменением можно пренебречь, то скорость этой реакции формально подчиняется законам мономолекулярных реакций, а сама реакция называется псевдомономолекулярной . Такие случаи сюеобразных исключений встречаются очень часто. Поэтому в химической кинетике было введено также понятие порядок химической реакции, и этим понятием пользуются гораздо чаще, чем молекулярностью реакции. Под порядком химической реакции понимают сумму показателей степеней концентрации веществ, входящих в кинетическое уравнение. Например, кинетическое уравнение для реакции взаимодействия кислорода и водорода 2На + Ог = = 2НаО имеет вид [c.35]

    Молекулярность и порядок реакций. Важными понятиями в химической кинетике являются молекулярность и порядок реакций. Рассмотрим гомогенную реакцию, протекающую в газовой фазе по уравнению [c.215]

    Важным понятием в химической кинетике является порядок реакций. Он равен сумме показателей степеней концентраций отдельных реагентов в выражении для закона скорости. Например, реакция диссоциации. молекулярного иода на атомы является реакцией первого порядка, так как в законе скорости этой реакции [c.114]


    Важным понятием в химической кинетике является порядок реакций. Он равен сумме показателей степеней концентраций отдельных реагентов в выражении для закона скорости. Например, реакция диссоциации молекулярного иода на атомы является реакцией первого порядка, так как в законе скорости этой реакции о = = [1г] показатель степени концентрации иода равен единице. Реакция иода с водородом будет реакцией второго порядка — первого порядка в отношении концентрации водорода и первого порядка в отношении концентрации иода, поскольку V = [Иг] [Ь]. [c.164]

    Основной теоретической задачей в химической кинетике является создание такой системы взглядов и уравнений, которая позволила бы, исходя из молекулярных параметров реагирующих компонентов и внешних условий протекания процесса, вычислить его скорость. К молекулярным параметрам относятся масса реагирующих молекул, геометрическая конфигурация, порядок связи отдельных атомов и атомных групп в молекуле, энергетическая характеристика отдельных связей, совокупность возможных энергетических состояний молекулы. Под внешними условиями понимается давление (или концентрации), температура, условия, в которых осуществляется процесс (например, проведение реакции в статических условиях или в потоке). В решении этой задачи важным этапом является интерпретация кинетических закономерностей при химических превращениях с позиций молекулярно-кинетической теории, поэтому настоящая глава и посвящается те.м основам молекулярно-кинетической теории, которые будут использованы далее при решении поставленной задачи. [c.84]

    С точки зрения кинетики, химические реакции можно классифицировать по молекулярностн, т. е. по числу молекул, принимающих одновременное участие в элементарном акте химического превращения, и по порядку реакции. Порядок реакции равен сумме показателей степеней при концентрациях реагирующих веществ в кинетическом уравнении реакции. Чаще всего порядок реакции не совпадает с ее молекулярностью, так как суммарное стехиометри- [c.144]

    Молекулярность и порядок реакций. В химической кинетике реакции классифицируются по двум параметрам по молеку-лярности и по порядку реакции. Число молекул, участвующих в элементарном акте химического взаимодействия, называется молекулярностью реакции. По этому параметру различают реакции моиомолекуляриые, бимолекулярные и т. д. Вероятность одновременного соударения многих частиц очень мала, поэтому тримолекуляриые реакции р ки, а четырехмолекулярные вообще неизвестны. [c.233]

    В методе молекулярных орбиталей идея делокализации л-электронов находит свое выражение в том, что электроны, находящиеся на орбиталях, охватывающих всю систему сопряжения, характеризуются минимальной энергией. Квантовомеханические расчеты полисопряженных систем с использованием метода молекулярных орбиталей были проведены рядом исследователей - . Эти расчеты также показывают, что взаимодействие л-электронов сопряженных связей сопровождается уменьшением внутренней энергии системы, возрастанием поляризуемости системы и снижением энергии возбуждения. Энергия сопряжения выражается обычно в единицах обменного интеграла р и для бензола, например, равна 2р(р=18 ккал/моль). Метод молекулярных орбиталей в различных его вариантах позволяет определить порядок связи, электронную плотность, индекс свободной валентности и некоторые другие характеристики сопряженных систем. Указанные параметры, отражающие, по сути дела, распределение электронной плотности, позволяют часто судить о реакционной способности сопряженных систем, о некоторых аспектах кинетики и термодинамики химических реакций, о структуре переходных комплексов и решать ряд других задач. [c.27]

    Такая система химических уравнений означает, что стадия 1 является реакцией первого порядка и ее скорость пропорциональна [Вгг]. Стадия 2 является реакцией второго порядка, и ее скорость пропорциональна [Вг][Нг]. В данном случае порядок реакции соответствует молекулярности, т. е. реакция бимолекуляр-на и уравнение скорости этой реакции второго порядка. Если же встречается выражение На-ЬВгг—>-2НВг без упоминания о кинетике, значит, автор и не имеет в виду кинетику и не считает, что механизм реакции простой, бимолекулярный. Это особенно ясно видно на примере химического уравнения с большим числом молекул. Вряд ли возможно столкновение одновременно двадцати одной частицы, входящей, например, в следующее уравнение реакции  [c.66]


Смотреть страницы где упоминается термин Кинетика химических реакций Молекулярность и порядок реакций: [c.79]    [c.13]    [c.193]    [c.13]    [c.193]    [c.115]   
Смотреть главы в:

Техно-химические расчёты Издание 4 -> Кинетика химических реакций Молекулярность и порядок реакций

Технохимические расчеты Изд.3 -> Кинетика химических реакций Молекулярность и порядок реакций




ПОИСК





Смотрите так же термины и статьи:

Кинетика химическая

Кинетика химических реакций

МОЛЕКУЛЯРНАЯ КИНЕТИКА

Молекулярность реакции

Основные понятия химической кинетики (порядок реакции, молекулярность, константа скорости)

Порядок реакции

Реакции молекулярность и порядок

Реакции порядок Порядок реакции

Химическая порядок

Химические реакции молекулярность

Химические реакции порядок



© 2025 chem21.info Реклама на сайте