Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм реакции стадии

    Значения кажущихся энергий активации деалкилирования толуола в присутствии водяного пара на различных катализаторах близки (138—167 кДж/моль). Считают [264, 265], что это является косвенным подтверждением однотипности механизма реакции деметилирования на различных катализаторах. Предполагаемый механизм включает стадию разрыва связи Сар—СНз, адсорбированной на поверхности металла, с образованием молекулы бензола и метиленового радикала, который реагирует с молекулами воды, адсорбированными на гидрофильной поверхности носителя. [c.176]


    Дальше будет показано, что это приводит к такому положению, при котором простые операции по измерению константы скорости, порядка и энергии активации химической реакции не дают необходимых данных для установления истинного механизма химической реакции. Задача установления истинного механизма реакции требует от экспериментатора большой изобретательности нри выборе критерия для обоснования отдельных стадий, совокупность которых составляет предполагаемый механизм сложного процесса. [c.283]

    Выше в разделе 1.4 сформулированы общие необходимые условия множественности стационарных состояний (ст. с.) химической системы в кинетической области — это наличие в детальном механизме реакции стадий взаимодействия различных веществ. В данной главе проанализированы различные типовые модели изучаемых критических явлений (множественность ст. с., гистерезисы, автоколебания, медленные релаксации и т. п.) для модельных и некоторых реальных систем. Так, построены в некотором смысле простейшие модели критических явлений нетепловой природы исследовано число ст. с. для кинетических моделей трехстадийных каталитических механизмов общего вида предложена модель автоколебаний в реакции ассоциации для типовых механизмов проанализированы линейные времена релаксации к ст. с. Из конкретных реакций рассмотрены каталитическое окисление СО и холоднопламенное горение смеси углеводородов. В первом случае построена область множественности ст. с. и выявлены особенности времен релаксации. Во втором — предложена достаточно простая модель автоколебаний термокинетической природы. [c.123]

    Найдено, что для некоторых субстратов, различающихся природой группы К и соответственно электронными свойствами реакционного атома углерода, экспериментально определяемые каталитические константы практически инвариантны, несмотря на то что реакционные способности соединений в модельной реакции, например в реакции щелочного гидролиза, различаются очень сильно. Это является кинетическим свидетельством в пользу существования в механизме реакции стадии, общей для всех использованных соединений. [c.139]

    Что касается самого факта торможения реакции изомеризации и-пен-тана водородом, то в соответствии с установившимся в настоящее время взглядом на механизм реакции изомеризации н-парафиновых углеводородов на бифункциональных катализаторах, реакция протекает через стадию дегидрирования парафинового углеводорода с образованием оле-финового углеводорода. Следуя этой схеме, торможение реакции водородом можно объяснить снижением концентрации олефина вследствие гидрирования его в парафиновый углеводород, а также явлениями адсорбционного вытеснения пентана водородом с поверхности катализатора. [c.23]


    Временно наиболее эффективным способом удаления адсорбированного водорода. При диффузионном механизме все стадии протекают быстрее, чем удаление молекулярного водорода, растворенного в слое электролита, примыкающем к поверхности электрода. Кроме перечисленных, возможны также и другие кинетические варианты катодного выделения водорода. Так, например, может оказаться, что константы скорости двух или большего числа стадий мало отличаются друг от друга. Тогда при изменении условий, в которых происходит реакция, один механизм может замениться другим. При неизменных условиях на одном и том же электроде вследствие неоднородности его поверхности могут существовать участки, где выделение водорода совершается разными путями. [c.406]

    Хотя мы и не касаемся непосредственно механизма реакций, нри обсуждении вопроса, является ли стехиометрическое уравнение данной реакции полным, существенную помощь могут оказать простейшие представления о ее механизме. Пусть, например, реакция Л —> 5 идет в присутствии катализатора, например, энзима Е. Будем считать, что процесс в действительности проходит в две стадии сначала А и Е образуют комплекс С, а затем С диссоциирует на В VI Е. Тогда реакция А В заменяется на две реакции А Е С и С —> 5 -Ь . Если скорость реакции зависит только от текущих (мгновенных) концентраций веществ А и В, уравнение реакции А В является полным. Скорость реакции может также зависеть от фиксированной начальной или общей концентрации энзима, и тогда эта концентрация будет параметрической переменной. Но если скорость реакции зависит от мгновенной концентрации комплекса С или энзима Е, уравнение реакции Л —> i не будет полным. Можно предположить, что концентрация комплекса С всегда постоянна, Г и, таким образом, исключить ее из кинетического закона, выразив скорость реакции А В только через концентрации этих двух ве-. л ществ или одного из них. К сожалению, гипотезы подобного рода почти никогда не оправдываются в точности. Например, если в на-чальный момент в системе нет комплекса С, должно пройти некоторое время прежде чем будет достигнута его стационарная концентрация, которая хотя и не является строго постоянной, но сравнительно медленно меняется во времени. Б некоторых случаях период индукции бывает очень коротким, так что гипотеза о постоянстве концентрации комплекса С выполняется в течение почти всего периода реакции и выведенный с ее помощью кинетический закон находится в достаточно хорошем соответствии с экспериментальными данными. При необходимости уравнения таких реакций могут быть выделены в особый класс почти полных , но такое выделение вызывает возражения в теоретическом отношении, хотя и может оказаться практически полезным. [c.17]

    Мы уже отмечали, что изучение механизма реакций не входит в наши задачи. Интересно, однако, проследить, каким образом определенные предположения о стадиях реакции приводят к различным кинетическим зависимостям исследуемого нами типа. Рассмотрим с этой целью классический пример — реакцию образования фосгена из окиси углерода А и хлора ( з). Вдали от равновесия скорость этой реакции равна [c.79]

    Предполагается, что в реакциях, идущих по такому механизму, лимитирующей стадией является медленная ионизация органической частицы, за которой следует быстрая реакция с нуклеофильной или атакующей группой.  [c.472]

    Под общим понятием механизма реакции в настоящее время подразумевают процессы столкновения реагирующих частиц, перераспределения электронной плотности в них и другие элементарные стадии с учетом в каждом отдельном акте возможно более точной стерео-химической картины перехода от реагентов к продуктам [c.9]

    Применение в качестве индикатора радиоактивного водорода. Была сделана попытка определить стадии, через которые протекает изомеризация -бутана в изобутан при помощи радиоактивного изотопа водорода, трития [65]. Катализатор представлял собой хлористый алюминий, нанесенный на древесный уголь или на окись алюминия. Он применялся в присутствии или в отсутствии хлористого водорода. Обмен атомами водорода между бутаном и молекулярным водородом мало дает для объяснения механизма изомеризации, за исключением случаев, когда молекула бутана атакуется водородом. Степень обмена с хлористым водородом указывает на более эффективное участие его в реакции. Поскольку с тщательно очищенными реагентами опыты не проводились, любые заключения о механизме реакции, основанные на обмене трития и водорода, остаются открытыми для критики. [c.21]

    Окончательный успех в деле превращения одних элементов в другие был достигнут физиками, а не химиками тигель алхимика уступил дорогу ядерному реактору. Сначала ученые обратили внимание на огромную энергию, высвобождаемую при ядерных реакциях. Тот факт, что уран превращается при этом в барий и другие легкие элементы, первое время не вызывал столь большого интереса. Но химики быстро осознали, что радиоактивные изотопы обычных элементов представляют собой огромную ценность. Радиоактивный атом может играть роль своеобразной метки, его достаточно ввести в какое-то вещество, принимающее участие в реакции, чтобы при последующем наблюдении за ним раскрыть сложную последовательность всех ее стадий. Например, благодаря исследованиям при помощи меченного радиоактивным изотопом углерода удалось разобраться в механизме реакций фотосинтеза, и трудно представить себе, как бы это оказалось возможным сделать обычными методами. Радиоактивные и устойчивые изотопы позволяют решать химические проблемы, недоступные другим методам. Радиоактивные изотопы дают также возможность точной датировки событий далекого прошлого, представляющих исторический или геологический интерес. С их помощью установлен сравнительный возраст Земли и Луны, что привело к ниспровержению некоторых прежних теорий относительно происхождения Луны. [c.405]


    Процесс оксинитрования, если он идет через соль диазония, включает стадию нитрования фенола. Эта. реакция, как показал Инголд с сотрудниками [17], ускоряется азотистой кислотой. Реакция эта сложная, так как она идет одновременно по двум механизмам реакция нулевого порядка идет по нитроний-ионному механизму (она тормозится азотистой кислотой) и по особому механизму, управляемому кинетическим законом  [c.565]

    На основании полученных данных авторы приходят к выводу о бифункциональном механизме реакции изомеризации на Рс1-СаУ, согласно которому стадией, определяющей скорость реакции, является изомеризация олефина. В соответствии с экспериментальными результатами кинетика реакции описывается уравнением [c.28]

    Порядок реакции и ее молекулярность. Реакции можно различать по числу молекул в стехиометрическом уравнении или по числу молекул, участвующих одновременно в той стадии, которая определяет скорость всей реакции, т. е. по ее молекулярности, а также по ее порядку. Сумма показателей степени в уравнении (I, 8) п=р+9+г представляет собой суммарный порядок реакции, показатель р—порядок реакции по компоненту Л и т. д. Порядок, таким образом, служит эмпирическим признаком, применимым только к уравнению скорости, составленному по типу уравнения (I, 8). Если стехиометрическое уравнение правильно отражает истинный механизм реакции, порядок и молекулярность совпадают, и обе величины равны п=а- -Ь- -с или раздельно р=а, д=Ь, г=с. В таких случаях реакция первого порядка, является мономолекулярной реакцией, а реакция второго порядка—бимолекулярной и т. д. [c.23]

    Группа системотехники, имея результаты лабораторных опытов и полный анализ механизма реакции, направила задачу на аналоговую машину, чтобы определить кинетические коэффициенты для каждой стадии выбранного механизма. Эта работа была облегчена предварительным подбором кинетических коэффициентов на основе разработанных ранее графиков состав — [c.37]

    Задача расчета реакций такой степени сложности вручную вообще неосуществима. Более простые системы требуют огромного количества расчетов Решение методом последовательного приближения с использованием различных кинетических коэффициентов почти всегда исключает необходимость изучения механизма реакции по стадиям вместо этого можно определить общую константу скорости. Одним из важных преимуществ системотехники является применение новых средств и методов, таких, как упомянутые здесь, для того, чтобы более внимательно исследовать основные стадии отдельных реакций в процессах, которые требуют этого. [c.42]

    Механизмом реакции в самом узком смысле этого слова называется совокупность элементарных стадий, задаваемых стехиометрической матрицей Г из уравнения (3.24). Кинетическая модель процесса — это механизм, в котором каждой элементарной стадии поставлено в соответствие определенное значение параметров модели (в первую очередь — коэффициентов скорости). [c.105]

    Таким образом, порядок реакции характеризует формально-кинетическую зависимость скорости реакции от концентрации реагирующих веществ, а молекулярность — элементарный механизм отдельных стадий сложного процесса. Эти понятия совпадают только для простых по механизму реакций. [c.18]

    МНОГО сложнее, чем можно предположить по полному уравнению реакции. (Это будет продемонстрировано в гл. 16.) В нашем примере с NO прямая реакция в действительности осуществляется посредством нескольких сложных цепных стадий. Обратная реакция также протекает через ряд соответствующих постадийных реакций, и поэтому в окончательном отнощении концентраций, которое дает выражение для константы равновесия, все концентрации, относящиеся к промежуточным стадиям прямой и обратной реакций, взаимно сокращаются. Поэтому подробности механизма реакций ускользают из окончательного выражения для константы равновесия и не сказываются на расчетах, основанных на ее использовании. [c.173]

    Сложные реакции. Механизмы реакций замещения октаэдрических и плоско-квадратных комплексов металлов. Цепные реакции. Стадия зарождения цепной реакции, стадия развития цепи, ингибирующая стадия и стадия, обрывающая цепь. Стационарное состояние. [c.350]

    Впервые механизм реакции алкилироваиия изопарафинов олефинами был объяснен В. П. Ипатьевым [1]. По В. П. Ипатьеву, реакция протекает в две стадии. Б первой олефин реагирует с кислотой и образуется про- [c.9]

    СН2=СН2 + НВг СНзСНзВг Механизм реакции Стадия 1 - образование л-ком плекса  [c.68]

    Миграция ацильной группы, наблюдающаяся при восстановлении по Берчу соединения (ХЬУ1), с образованием соединения (ХЬУП)" , может быть объяснена следующим образом. Атака аниона (ХЬУШ) (СМ. раздел Механизм реакции , стадия 4) на карбонил ацетатной группировки приводит к промежуточному продукту (ХЫХ). Последующий перенос ацетила от к происходит по типу реакции Клайзена, затем следует присоединение протона к оксигруппе и восстановление карбонильных группировок  [c.20]

    Теоретический расчет высоты Е энергетического барьера составляет второй этап пути, ведуще1 о к полному решению задачи. Первая треть задачи может считаться выполненной, когда кинетически установлен механизм реакции — стадия, которую можно выполнить только экспериментально. Последняя часть задачи связана с определением величины, соответствующей множите-люА, в уравнении Аррениуса где - - константа скорости реак- [c.493]

    N02 "Ь Оз — N205 = О и имеет первый порядок по N205. Так как стехиометрическое уравнение определено с точностью до произвольного множителя, его всегда можно занисать таким образом, чтобы оно отражало молекулярность или порядок реакции. При исследовании элементарных стадий, составляющих механизм реакции, предполагается, что концентрации исходных веществ должны появляться только в выражении [c.84]

    Бах и др. [17] показали, что реакция Вг2+ Вг -> 2ВВг следует подобному механизму. Медленной стадией является реакция Вг + Сд -> ВВг -[-В с энергией Е 19,9 ккал, что па 2,2 кпал выше, чем соответствующая величина для реакции Н2Ч- Вг . Ингибирование ВВг количественно пе отличается от ингибирования НВг. [c.293]

    Лпмитпрующей стадией теперь является разрыв эфирной связи и образование связп с молекулой H O, идущий по механизму S 2. Наличие такой стадии в механизме реакции показали Олсон и 1Миллер [68], установившие,  [c.497]

    В дальнейшем в работе [104] был предложен и проверен метод определения лимитирующей стадии ряда параллельно-последовательных каталитических реакций. Метод заключается в сравнении наблюдаемого распределения О-атомов в продуктах - реакции и состава этих продуктов с теоретически рассчитанными для того или иного механизма реакции, проводимой в атмосфере Ог либо в смеси Нг и Ог. Возможности этого метода продемонстрированы на примере реакции дейтеролиза гем-диметилциклопропана в присутствии пленок Р1, Р(1, 1г и тех же металлов, нанесенных на АЬОз. Оказалось, что только две из семи обсуждаемых моделей согласуются с экспериментальными результатами по распределению продуктов реакции. Наибольшее предпочтение авторы отдают механизму, при котором происходит одновременное присоединение двух Н-атомов к адсорбированной на катализаторе молекуле гем-диметилциклопропана. Для уточнения предложенной [104] кинетической модели [c.107]

    Следует, однако, отметить, что высказанные выше соображения и выводы относительно механизма ароматизации алканов на металлических и металлоксидных катализаторах нельзя считать окончательными. Результаты, приведенные в [143, 144], дают основание считать, что механизм Сб-дегидроциклизации алканов на различных Pt-катализаторах в большой мере зависит от условий проведения эксперимента и в значительной степени— от строения исходного углеводорода. Анализируя имеющиеся данные, можно сделать вывод, что ароматизация н-алканов проходит преимущественно через промежуточные стадии дегидрирования и Сб-дегидроциклизации. В то же время алканы, имеющие четвертичный атом углерода (например, 2,2- или 3,3-диметилгексаны), не могут в условиях реакции столь же легко дегидрироваться и их ароматизация хотя бы частично проходит, по-видимому, по другому механизму — через стадию образования геж-диметилциклогексана. [c.240]

    Поскольку окислы металлов, рассмотренные в данном разделе, образуют надкислоты с перекисью водорода, то можно предполоншть что механизм реакции в данном случае может быть таким же, как и при энокси-дации олефинов органическими перкислотами. Однако ни п одном случае при таких реакциях не была выделена эпокись. Мы полагаем потому, что реакция проходит через стадию образования промежуточного оксониевого продукта(1Х), который может взаимодействовать с анионом окиси металла, образуя промежуточный продукт (X), легко подвергающийся гидролизу с образованием транс-гликоля. Для случая надванадиевой кислоты [c.371]

    Механизм реакции не вполне ясен. Реакция протекает на поверхности анода и, по-видимому, включает стадию образования переходного состояния, в котором органическая молекула присоединена к поверхности анода в окисленном состоянии. Поскольку применяется потенциал ниже того, который необходим для образования фтора, возможно, что в процессе реакции образуется в качестве промежуточного соединения активный фторид металла, который и является фторирующим агентом. Дальнейшим доказательством в пользу этого предположения является наблюдение, что идущий в некоторой степени крекинг углеродной цепи аналогичен крекингу при применении СоГ или АдГа при значительно более высоких температурах. [c.73]

    К сон алению, количественной стороне этой реакции уделялось мало внимания. Из просмотра литературы создается впечатление, что хлорметилирование является больше искусством, чем наукой. О механизме реакции неизвестно ничего, кроме окончательных результатов. Возможно, что реакция включает стадию образования сравнительно устойчивых ионов карбония ROGH 2 и последующее взаимодействие их с ароматическим кольцом. Хотя незамещенные первичные карбоний-ионы являются вообще очень активными промежуточными соединениями, однако возможность резонанса RO — Hj, как можно ожидать, должна была бы сильно стабилизировать промежуточное соединение и этим облегчать его образование. [c.458]

    Наблюдения, что реакции нитрования в серной кислоте следуют второму кинетическому порядку, а в азотной кислоте первому порядку, мало разъясняют вопрос о механизме этой реакции. Однако нулевой порядок скорости, полученный в органических растворителях, а также следование этой реакции первому порядку для менее реакционноспособных соединений являются убедительными доказательствами в пользу того, что истинный механизм включает участие ароматического соединения и образование азотной кислотой определенного соединения на медленной, лимитирующей реакцию стадии. Таким веществом может быть только ион нитрония. [c.561]

    Уксусная кислота, нитрометан, азотная и серная кислоты являются растворителями новышенной полярности. Найдено, что увеличение полярности среды неизменно приводит к увеличению скорости нитрования, иногда с понижением порядка реакции. Таким образом, механизм реакции нитроваЕ1ия должен включать стадию, управляющую скоростью, при которой суммарный заряд ионов не меняется. Нитрование должно проходить по двухстадийному механизму, включая стадию сравнительно слабой атаки ароматического соединения ионом нитрония, с последующим быстрым мономолекулярным выделением протона  [c.562]

    Рустамов с сотр. исследовали кинетику конденсации фенола с ацетоном в присутствии серной, соляной и ортофосфорной кислот и сильнокислотных ионообменных смол с сульфогруппами (КУ-1 и КУ-2). Они показали, что реакция является необратимой. Энергия активации в случае использования серной кислоты и ионообменных смол одинакова (15,6 ккал1моль), что говорит об идентичности механизма реакции и одинаковой лимитирующей стадии при гомогенном и гетерогенном процессах. Высокая энергия активации указывает, чта катализ протекает в кинетической области. По активности катализаторы располаг аются в ряд  [c.87]

    Это обстоятельство служит еще одним доказательством сво-бодно-радикального цепного механизма реакции. Впрочем, если крекинг ингибируется окислом азота [26] или пропиленом [27, 28], которые, как известно, сразу же вступают в реакции со свободными радикалами, то имеет место несовпадение скорости реакции. Реакциям, происходящим в заключительной стадии крекинга, приписывают и молекулярный характер [29] и свободнорадикальный механизм [30, 31]. [c.298]

    Несмотря на установленные общие закономерности ионнокоординационной полимеризации 1,3-диенов подбор катализаторов носит часто эмпирический характер. Это обусловлено, в первую очередь, отсутствием четких сведений о механизме реакций, лежащих в основе процессов стереорегулирования. Общепринято, что ионно-координационная полимеризация протекает через стадии координации мономера на активном центре и его внедрения по связи металл — углерод. [c.105]

    Таким образом, на основе того, что нам известно о стандартной реакции Виттига, на первый взгляд перспектива улучшения ее проведения в МФК-условиях маловероятна. Однако в 1973 г. Меркль и Мерц [483] показали, что для проведения реакции Виттига даже с неактивированными фосфониевыми солями можно использовать систему концентрированный раствор гидроксида натрия/органический растворитель. С тех пор эту препаративно очень простую методику широко используют [483]. Вопросы, связанные с механизмом реакции, все еще остаются не совсем ясными. Некоторые авторы использовали в качестве катализаторов аммониевые соли или краун-эфиры, другие обходились без катализаторов, аргументируя это тем, что, как известно, фосфониевые соли сами являются межфазными катализаторами. Однако во многих случаях при использовании водного гидроксида натрия первая стадия депротонирования проходит, по-видимому, межфазно. Образующийся илен является нейтральной частицей, и поэтому для облегчения его диффузии в глубь органического слоя катализатор не нужен. Это приводит к тому, что конкурирующая реакция с водой не происходит. В других случаях в качестве щелочей использовали твердый трет-бутоксид калия или карбонат калия [484], твердый фторид калия [1297] или твердый гидроксид натрия [1782]. [c.252]

    Молекулярность простой одностадийной реакции-это число индивидуальных молекул, которые взаимодействуют в данной реакции. Чтобы указать молекулярность реакции, необходимо иметь сведения о ее механизме. Реакция, подобная протекающей между водородом и иодом, на самом деле может осуществляться в несколько отдельных стадий, каждая из которых имеет свою молекулярность. Представление о молекулярности полной реакции, осуществляемой в несколько стадий, лищено смысла. Большинство простых одностадийных реакций являются мономолеку-лярными (самопроизвольный распад) или бимолекулярными (столкновения). Подлинно тримолекулярные реакции очень редки, так как столкновения трех частиц мало вероятны. О тетрамолекулярных реакциях и реакциях более высокой молекулярности практически не приходится говорить. Реакции, которые по своей стехиометрии представляются тримоле-кулярными или еще более сложными, после тщательного изучения обычно оказываются последовательностями простых мономолекулярных и бимолекулярных стадий. Одна из интереснейших проблем химической кинетики как раз и заключается в установлении истинной последовательности реакций в каждом таком случае. [c.358]


Смотреть страницы где упоминается термин Механизм реакции стадии: [c.283]    [c.177]    [c.227]    [c.232]    [c.475]    [c.87]    [c.390]    [c.402]    [c.298]    [c.90]   
Химия (2001) -- [ c.143 ]




ПОИСК







© 2025 chem21.info Реклама на сайте