Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация и электролитическая диссоциация

    Следует отметить, что кроме воды известно огромное число самых различных растворителей. И так же, как при образовании водных растворов, центральную роль играют процессы сольватации—взаимодействие молекул растворителя с растворяемым объектом. Значение процессов гидратации при электролитической диссоциации в водных растворах отмечалось впервые в работах И. А. Каблукова (1891) и В. А. Кистяковского (1888—1890), положивших начало развитию теории электролитов, один из важнейших вопросов которой является изучение структуры растворов и характера распределения в них ионов. Установлено, что не только молекулы воды влияют на структуру раствора (поляризация, ионизация), но и растворяемое вещество в свою очередь влияет на структуру воды (растворителя). Как заряженные частицы, ионы обладают электрическим полем, напряжен юсть которого достигает величин порядка 10 В/см. Это поле определяет сильное электростатическое взаимодействие между ионом и полярными молекулами воды. Молекулы воды, находящиеся в непосредственной близости к иону, могут связываться с ним силами химической связи, образуя химическое соединение. Непосредственно присоединенные к иону молекулы воды строго ориентированы, их расположение напоминает структуру кристалла. Следовательно, при растворении электролита структура воды становится неоднородной. Часть молекул воды, которая далека от иона, остается в прежнем состоянии, это собственная структура воды HjO ,, другая часть—псевдокристаллическая структура, характерная для ионной зоны Н О , . В переходном слое между этими зонами вода имеет промежуточную [c.109]


    Физико-химические особенности полярных молекул определяются их способностью реагировать на внешние электрические поля (электрическая поляризация) и на поля, созданные другими полярными молекулами. В частности, за счет взаимодействия с полярными молекулами воды такие полярные молекулы, как НР, НС1 и др., могут подвергаться электролитической диссоциации. [c.83]

    К тому же существование твердых электролитов и ионных проводников не является доказательством наличия в них самостоятельных ионов. Под воздействием прилагаемого электрического поля происходит дополнительная поляризация, приводящая к возникновению ионов в твердом состоянии, в результате чего наблюдается ионная проводимость. При растворении в воде солей, кислот и оснований (также не имеющих готовых ионов) под воздействием электрического поля полярных молекул воды протекает процесс электролитической диссоциации растворенных электролитов с образованием гидратированных ионов. [c.51]

    Из табл. 59 следует, что при переходе от хлорида магния к хлориду бария наблюдается одновременное увеличение радиуса катиона, степени электролитической диссоциации и растворимости металла в своей соли. В расплавленном хлориде бериллия металл практически не растворяется. С увеличением радиуса аниона соли, как правило, растворимость металла понижается. Это объясняется уменьшением силы взаимодействия анионов расплавленной соли с катионами металлической фазы, а следовательно, уменьшением вероятности растворения металла в расплавленной соли. Поэтому металлы должны легче растворятьря в расплавленных фторидах, чем в хлоридах. При этом, однако, могут иметься отклонения от этой закономерности, обусловленные поляризацией ионов (см. 21). [c.261]

    Сведения об электрохимических свойствах системы доставляются электрохимическими методами (электропроводность, доли переноса тока, потенциометрия). Помимо этой группы методов, ценные сведения о природе возникающих при электролитической диссоциации продукта присоединения ионов могут быть получены ИК- и КРС-спектроскопией. Последний метод может также доставить соответствующие сведения о строении продуктов присоединения. Сведения о строении могут быть также получены исследованием диэлектрической проницаемости и анализом диаграмм ряда расчетных свойств, основанных на диэлектрической проницаемости (поляризация, средние дипольные моменты). [c.411]

    Данные по спектрам поглощения растворов солей показали, что молярные коэффициенты поглощения при разных длинах волн, рассчитываемые как DJ , не изменяются в широкой области концентраций электролита фх —оптическая плотность при длине волны X, с—концентрация раствора исследуемого электролита). Этот факт не мог быть объяснен теорией электролитической диссоциации Аррениуса, поскольку с уменьшением концентрации электролита должно было происходить увеличение степени диссоциации и, следовательно, изменение спектров поглощения. Полная диссоциация сильного электролита объясняла постоянство молярных коэффициентов поглощения, поскольку при всех концентрациях раствора светопоглощающими частицами оставались одни и те же ионы. Аналогичный характер имеет концентрационная зависимость вращения плоскости поляризации и ряда других свойств растворов сильных электролитов. Теория электролитической диссоциации не может объяснить постоянство теплот нейтрализации хлорной, соляной и других сильных кислот гидроксидами щелочных металлов. Однако это можно объяснить полной диссоциацией реагентов при всех концентрациях и протеканием реакции нейтрализации как взаимодействия ионов Н+ и ОН" по схеме Н+ + ОН = НгО. [c.438]


    Потенциал идеально поляризуемого электрода не зависит от ка-кой-либо электрохимической реакции и может принимать в области идеальной поляризуемости любое значение, определяемое прикладываемым извне напряжением. Теоретически эта область должна быть ограничена напряжением разложения растворителя, т.е. таким напряжением, которое необходимо для электролитической диссоциации растворителя на паре инертных электродов. Для воды это напряжение составляет 1,23 В при 25°С. Если к паре платиновых электродов в водном растворе (например, серной кислоты) приложить разность потенциалов, превышающую 1,23 В, вода начнет разлагаться с выделением кислорода на аноде и водорода на катоде. Однако на многих металлах скорость выделения водорода чрезвычайно мала. По этой причине эффективная область идеальной поляризуемости ртутного электрода простирается вплоть до потенциалов, примерно на 1В отрицательнее потенциала выделения водорода. Область положительной поляризации ртути ограничена не выделением кислорода, а анодным окислением металла с образованием либо ионов ртути(I) (как в растворах нитратов), либо нерастворимых солей ртути(1) (как в растворах хлоридов). В некоторых растворах полный диапазон идеальной поляризуемости ртутного электрода превышает 2 В. Такой электрод, конечно, не является полностью идеально поляризуемым, так как при потенциалах более отрицательных, чем обратимый водородный потенциал, будет наблюдаться выделение водорода, хотя и медленное. Кроме того, различные примеси, от которых невозможно полностью избавиться, в особенности кислород, реагируя на электроде, создают электрический ток. Впрочем, практически ртутный электрод можно считать идеально поляризуемым во многих растворах электролитов. [c.52]

    Импульсный радиолиз возник в радиационной химии, которая изучает химические и физико-химические превращения веществ под действием ионизирующего излучения. Его широко применяют для выяснения механизма радиолитических превращений, где с его помощью достигнуты крупные успехи установлено образование сольватированных электронов (ег) при радиолизе жидкостей, экспериментально обнаружено наличие шпор в облученных воде и этаноле, определены времена сольватации электронов в ряде жидкостей, идентифицированы другие первичные продукты радиолиза многих систем, исследована их реакционная способность и т. д. Кроме того, импульсный радиолиз часто используют для решения различных общехимических проблем. Этим методом получают и исследуют сольватированные электроны, неорганические и органические свободные радикалы, анион- и катион-радикалы, ионы металлов в необычных состояниях окисления, возбужденные молекулы и атомы, карбанионы и карбокатионы, ионные пары. Его применяют для изучения многих свойств указанных короткоживущих частиц реакционной способности, оптических спектров поглощения, коэффициентов диффузии, величин рК электролитической диссоциации и т. п. Нередко он находит применение для исследования особенностей химических и физико-химических процессов кинетики быстрых реакций, туннелирования электронов, переноса протонов, передачи энергии возбуждения, химической поляризации электронов и других. [c.123]

    Константа электролитической диссоциации Сс1 (СЫ)4" незначительна, и потому потенциал кадмия в цианистых электролитах гораздо электроотрицательнее, и катодная поляризация значительно выше, чем в кислых кадмиевых электролитах. Высокая катодная поляризация обусловливает высокую рассеивающую способность цианистых ванн, образование плотных и мелкокристаллических покрытий без введения в электролиты специальных добавок. В цианистых ваннах (в отличие от кислых ванн) возможно осуществлять покрытие изделий очень сложной конфигурации. Выход металла по току, как и во всех цианистых электролитах, в значительной степени зависит от и содержания свободного цианида. При низком значении Ок и невысоком содержании свободного цианида в ванне возможно получать высокий выход по току, близкий к теоретическому. [c.250]

    Положительно заряженные сложные комплексные сольватированные ионы в состоянии, соответствующем данной среде, которые могут образоваться в водных и неводных растворах, а также в отсутствие растворителя под влиянием различных факторов — электролитической и термической диссоциации, таутомеризации, поляризации, диспропорционирования, действия электрического разряда, столкновения с атакующими их основаниями и др например [Ме(ЫНз)т(Н20) ] [Ме(ЫНз)ж(Н20) .,0НГ и + № [Ме(НМ) ] [Me(HM) . ,M]( - ) (Ме(НМ) -2М2]("-2)+. [c.404]

    Как отмечалось выше, возникновение сильных односторонних деформаций наиболее характерно для солей объемистых и малозарядных 18-электронных катионов с легко деформируемыми анионами. Влияние на электролитическую диссоциацию взаимной поляризации ионов должно, следовательно, особенно заметно сказываться именно у них. Действительно, во всех тех случаях, когда рассматриваемые соли достаточно растворимы в воде, степень их диссоциации оказывается пониженной по сравнению с обычной для данного типа. Так, уже Сс1С12 диссоциирован значительно меньше, чем то отвечает типу МХг, а при переходе к СёВгг и затем к Сс11г имеет место дальнейшее уменьшение степени диссоциации. Еще хуже диссоциированы соответствующие соли Hg. Например, степень диссоциации Н СЬ даже в очень разбавленных растворах не превышает 0,5%. Напротив, соли тех же катионов с трудно деформируемыми анионами (СЮГ, Р",К Оз ) диссоциированы нормально. [c.430]


    И. Зато, несомненно, беспредельна, принципиально по крайней мере, электродвижущая сила концентрационного элемента, пропорциональная логарифму отношения концентраций на электродах. Эту зависимость Гельмгольц вывел термодинамически из рассмотрения замкнутого обратимого цикла затем В. Нернст обосновал ее кинетически исходя из теории электролитической диссоциации. Если и в твердых диэлектриках мы имеем дело с твердыми растворами , частично диссоциированными, то ничтожная величина концентрации облегчает образование весьма большого отношения концентраций при сравнительно малом транспорте вещества. По-видимому, как показывают неопубликованные еще наблюдения А. И. Тудоровского, в известковом шпате мы имеем дело с поляризацией именного такого происхождения. [c.80]

    Химические свойства. В молекулах галогенпроизводных атомы галогенов соединены с углеродными атомами ковалентными связями (см.). Поэтому галогенпроизводные не способны к электролитической диссоциации и не образуют ионов галогенов, как это имеет место в случае неорганических галогенсодержащих веществ (Na l, КВг, Nal и т.п.), в которых галогены соединены с металлами при помощи ионной связи. Тем не менее галогенпроизводные, как уже указано, представляют собой весьма реакционноспособные вещества, а атомы галогенов в них могут замещаться другими атомами и группами. Это объясняется тем, что ковалентные связи между атомами углерода и галогенов поляризованы (см.). Прочность этих связей в разных соединениях неодинакова она зависит как от строения углеводородного радикала, так и от связанного с радикалом галогена. Эти факторы влияют на степень поляризации связи и обусловливают различную подвижность галогенов. Так, иод, обладающий среди галогенов самой большой атомной массой, наиболее подвижен в реакциях. Более прочно связан с углеродом бром, еще прочнее — хлор. [c.104]

    В некоторых средах коррозионное растрескивание происходит из-за наводороживания, связанного с электрохимическими катодными процессами в кислых средах или с катодной поляризацией при ЭХЗ. При электрохимических процессах на катодных поверхностях могут адсорбироваться гидратированные ионы водорода, которые при адсорбции металлом освобождаются от молекул воды, причем часть ионов разряжается и молизу-ется по реакции 2(Н + е) Нт с выделением в виде пузырьков газа, а часть в виде протонов Н внедряется в решетку стали, вызывая ее низкотемпературное наводороживание. При наличии электрохимической защиты отмечена прямая связь наводороживания с pH. химическим составом электролита и его концентрацией (максимум - при средних концентрациях, далее снижается электролитическая диссоциация) и с плотностью тока. [c.26]

    К кислотам относятся и положительно заряженные комплексные и сольватированные ионы, которые могут образоваться в водных и неводных растворах, а в отсутствие растворителя под влиянием различных факторов (электролитической и термической диссоциации, таутомеризации, поляризации, диспропорционирования, действия электрических зарядов, столкновения с атакующими их, основаниями и т. д.), и отрицательно заряженные соединения, комплексные и сольватированные ионы, характеризующиеся относительно более высокими константами кислотности по сравнению с их константами основности — HSO4-, H2PO4 , НООС—СОО- и т. д. [c.154]


Смотреть страницы где упоминается термин Поляризация и электролитическая диссоциация: [c.7]    [c.172]    [c.18]    [c.723]    [c.14]    [c.253]    [c.275]    [c.291]    [c.86]    [c.25]   
Учебник общей химии (1981) -- [ c.430 ]




ПОИСК





Смотрите так же термины и статьи:

Электролитическая диссоциаци

Электролитическая диссоциация



© 2025 chem21.info Реклама на сайте