Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролитическая диссоциация и растворитель

    Жидкие растворы по своей природе, свойствам, характеру взаимодействий между частицами очень разнообразны, в связи с чем трудно создать единую количественную теорию, описывающую поведение различных растворов в широкой области концентраций. Наука о растворах —одна из наиболее старых областей естествознания, в развитие которой сделан вклад многими исследователями. В ходе развития учения о растворах были высказаны две точки зрения на природу растворов —физическая и химическая. Физическая теория растворов, возникшая главным образом на основе трудов Вант-Гоффа, Аррениуса и Оствальда, опиралась на экспериментальное изучение коллигативных свойств разбавленных растворов (осмотическое давление, новышение температуры кипения, понижение температуры замерзания раствора и т. п.), зависящих главным образом от концентрации растворенного вещества, а не от его природы. Количественные законы (законы Вант-Гоффа, Рауля) были открыты в предположении, что в разбавленных растворах молекулы растворенного вещества подобны молекулам идеального газа. Отступления от этих законов, наблюдаемые для растворов электролитов, были объяснены на основе теории электролитической диссоциации Аррениуса. Простота представлений физической теории и успешное применение ее как для объяснения свойств растворов электролитов, так и для количественного изучения электрической проводимости растворов обеспечили быстрый успех этой теории. Химическая теория растворов, созданная преимущественно Менделеевым и его последователями, рассматривала процесс образования раствора как разновидность химического процесса, характеризующегося взаимодействием частиц смешивающихся компонентов. Менделеев рассматривал растворы как системы, образованные частицами растворителя, растворенного вещества и неустойчивых химических соединений, которые образуются между ними и находятся в состоянии частичной диссоциации. В классических трудах Менделеева четко сформулированы основные положения теории растворов. Менделеев указывал на необходимость использования всей суммы химических и физических сведений о свойствах частиц, [c.344]


    Зависимость степени электролитической диссоциации от природы растворителя, температуры и посторонних электролитов [c.437]

    Механизм электролитической диссоциации — распада молекул или кристаллов растворяемого вещества на ионы под влиянием молекул растворителя — был понят несколько позднее, благодаря исследованиям различных ученых, в том числе русских В. А. К и с т я-ковского и И. А. Каблукова. Согласно современным воззрениям, такой распад является результатом взаимодействия полярных молекул растворителя, например воды, с молекулами или кристаллической решеткой растворяемого вещества. Молекулы растворителя атакуют кристаллическую решетку, разрушая ее и переводя составные части решетки (ионы) в раствор в форме сольватированных [c.68]

    Идея о распаде вещества в растворе на ионы была высказана Сванте Аррениусом (1857). Основоположниками современной теории электролитической диссоциации как процесса, вызываемого сольватацией молекул, являются И. А. Каблуков и В. А. Кистяковский. В отличие от гипотезы ионизации С. Аррениуса, не учитывающей взаимодействие растворенного вещества с растворителем, в их тео-[ ии к объяснению электролитической диссоциации привлекается имическая теория растворов Д. И. Менделеева. [c.128]

    Однако нужно иметь в виду, что понятия кислота и осио в теории электролитической диссоциации, предназначались тол растворов и не характеризовали возможность химического вза жду растворенным веществом и растворителем. Сейчас сложил представления о кислотах и основаниях, так как стало ясно, чп основания существуют не только в водных растворах, но и в р сителями кислотных и основных свойств могут быть молекулы висимости от кислотности пли основности растворителя одно и может быть как кислотой, так и основанием. По теории Брен(1 ваемля протолитическая теория) кислотами являются веществ [c.233]

    Дальнейшее развитие химии и использование неводных растворителей привело к необходимости объяснить процессы, протекающие в этих растворителях. Например, хлорид аммония, ведущий себя как соль в водном растворе, при растворении в жидком аммиаке проявляет свойства кислоты, растворяя металлы с выделением водорода. Мочевина С0(КНг)2, растворяясь в безводной уксусной кислоте, проявляет свойства основания, в жидком аммиаке — свойства кислоты, а ее водные растворы нейтральны. Все эти факты нельзя было объяснить на основании теории электролитической диссоциации Аррениуса. В связи с этим определение кислот и оснований были пересмотрены. [c.75]


    Такнм образом, по Писаржевскому, переход ионов из металла в раствор совершается не за счет физически неясной электролитической упругости растворения металла, а в результате его взаимодействия с молекулами растворителя. Явление электролитической диссоциации электролитов и возникновение электродного потенциала основаны, следовательно, на одном и том же процессе сольватации (в случае водных растворов — гидратации) ионов. Из уравнения реакции (10.20) следует, что при растворении образуются не свободные, а сольватированные ионы, свойства которых зависят от и >ироды растворителя. Поэтому в отхичие от теории Нернста значение стандартного потенциала данного электрода должно меняться при переходе от одного растворителя к другому. Подобная зависимость была действительно обнаружена и послужила предметом исследований многих авторов (Изгарышева, Бродского, Плескова, Хартли, Измайлова и др.). Было установлено, что изменение электродного потенциала при переходе от одного растворителя к другому оказывается тем большим, чем М зньше радиус и выше заряд иона, участвующего в электродной реакции. По Плескову, меньше всего изменяются потенциалы цезиевого, рубидиевого и йодного электродов, в установлении равновегия на которых участвуют одновалентные ионы значительных размеров. Напротив, эти изменения особенно велики в случае ионов водорода и поливалентных катионов малых размеров. Именно такой зависимости электродных потенциалов от природы растворителя следовало ожидать на основе представлений Писаржевского о роли сольватационных явлений в образовании скачка потенциала металл — раствор. Для количественного сравнения потенциалов в разных растворителях применяют в качестве стандартного нулевого электрода цезиевый [c.221]

    Осмотическая теория э.д.с. Нернста основана на классической теории электролитической диссоциации, поэтому она сохраняет основной недостаток теории Аррениуса — отождествление свойств растворов электролитов со свойствами идеальных систем. Развитие теории э.д.с. и электродного потсчщиала повторило ход развития теории растворов электролитов. Так, введение понятий о коэффи-цисн1е активности (как о величине, связанной с межионным взаимодействием) и об активности (как эффективной концентрации), явившееся крупным шагом вперед в развитии теории растворов, позволило получить на основе теории Нернста качественно верную зависимость электродного потенциала от состава раствора. Учет взаимодействия между растворенным веществом и растворителем, на необходимости которого настаивал Д. И. Менделеев, и в особенности учет возможности образования в растворах гидратированных или сольватированных ионов (А. И. Каблуков) были важными вехами в развитии теории раство зов электролитов. Они позволили найти причину диссоциации электролитов на ионы. Ионная сольватация должна играть существенную роль и в процессе установления равновесия между электродо и раствором. [c.220]

    Степень электролитической диссоциации вещества, растворенного в данном растворителе, зависит (при постоянных температуре и давлении) от природы этого вещества и от его концентрации. Если вещество прн растворении не диссоциирует ( = 0, а = Л/, а = 0), оно не является электролитом. Если а близка к единице, то и соединение является сильным электролитом. Для многих химических соединетшй 0<ы<С1, а следовательно, п< М они относятся к слабым электролитам. [c.35]

    Соли, кислоты и основания-при растворении в воде и неко-i торых других полярных растворителях частично или полностью распадаются (диссоциируют) на ионы. Эти ионы существуют в растворе независимо от того, проходит через раствор электрический ток или нет. Вследствие этого число независимо движущихся частиц растворенного вещества больше, чем при отсутствии диссоциации понижение температуры затвердевания, o -i мотическое давление и величины других коллигативных свойств растворов (см. т. I, стр. 247) возрастают прямо пропорционально числу частиц. При уменьшении концентрации диссоциация на ионы (электролитическая диссоциация) по закону действия масс приближается к предельной, т. е. становится практически полной, и коэффициент Вант-Гоффа приближается к простому целому числу (2, 3, 4 — в зависимости от числа ионов, образующихся при растворении молекулы вещества  [c.389]

    Некоторые вещества, называемые электролитами, обладают способностью при растворении в соответствующих растворителях, например в воде (к которой первоначально и относилась теория Аррениуса), распадаться иа противоположно заряженные частицы—ионы. Распад электролитов на ионы при растворении был назван процессом электролитической диссоциации, отсюда и теория Аррениуса называется теорией электролитической диссоциации. [c.34]

    Механизм процесса электролитической диссоциации. Первоиа чально сформулированная Сванте Аррениусом теория электролитической диссоциации не учитывала всей сложности взаимодействия электролитов с молекулами растворителя. Ясное представление о механизме процесса электролитической диссоциации сложилось ыа основе использования наряду с теорией Аррениуса сольватной теории растворов Д. И. Менделеева и работ И. А. Каблукова, посвященных сольватации ионов. [c.171]

    Другим примером влияния полярной структуры молекул на свойства вещества может служить хорошо известное явление электролитической диссоциации. Здесь также играет роль взаимодействие полярных молекул растворителя (и, в частности, воды) с сильно полярными молекулами электролитов. [c.81]


    Процесс электролитической диссоциации протекает пе одинаково у истинных и потенциальных электролитов. Истинные электролиты, т. е. вещества ионного характера — соли, диссоциируют пп ионы уже при расплавлении в результате ослабления связей между ионами в кристаллической решетке. В процессе растворения в воде (или других полярных растворителях) молекулы растворителя вытягиварот с поверхности кристалла соли в первую очередь положительно заряженные ионы, что влечет за собой и выпадение из решетки отрицательно заряженных ионов с последующей их гидратацией. В том и другом случае в исходном электролите — кристалле соли — уже имеются готовые противоположно заряженные ионы, но только связанные друг с другом при расплавлении или растворении происходит, таким образом, просто распад системы ионов на составляющие. [c.171]

    По общепринятым сейчас представлениям, истоки которых можно найти в работах И. А. Каблукова (1891), энергия, обеспечивающая разрыв связей в молекуле пли в решетке кристалла, а следо-вател[)Ио, и появление попов, выделяется в самом процессе электролитической диссоциации и представляет собой результат взаимодействия между растворяемым веществом и растворителем. Благодаря этому взаимодействию образуются комплексы, состоящие из молекул растворителя, т. е. сольватированные или, в случае водных растворов, гидратированные ионы. Энергетические эффекты, наблюдающиеся ири этом, были названы, по предложению Фаянса (1915), энергиями сольватации АОс. = ис) или, в водных средах, гидратации (—А0,.= 7г), а соответствующие тепловые эффекты — теплота-ми сольватации (—АНс= с.) и гидратации (—АЙг = ()г)- [c.47]

    Недостаточность одного только физического объяснения процессов диссоциации была ясна еще Д. И. Менделееву. Известно, что он был противником теории электролитической диссоциации Аррениуса и даже воздерживался от ее изложения в Основах химии . Д. И. Менделеев и русская школа химиков (И. Л. Каблуков, Д. П. Коновалов и др.) в своих работах подчеркивали значение химической теории растворов, в частности значение химического взаимодействия между растворенным веществом и растворителем с образованием сольватов. [c.292]

    А. В. Писаржевский показал (1912), что для ионных реакций обмена в Смешанных растворителях (смеси воды со спиртами, глицерином, гликолем) величины изобарных потенциалов реакции меняются с изменением растворителя вплоть до перемены знака. Ни внутреннее трение, ни электролитическая диссоциация, ни растворимость не объясняют полностью влияния растворителя на положение равновесия. Основную роль для ионных равновесий в различных растворителях играет взаимодействие с растворителем растворенных веществ, диссоциирующих ва ионы (сольватация ионов). [c.287]

    Потенциал идеально поляризуемого электрода не зависит от ка-кой-либо электрохимической реакции и может принимать в области идеальной поляризуемости любое значение, определяемое прикладываемым извне напряжением. Теоретически эта область должна быть ограничена напряжением разложения растворителя, т.е. таким напряжением, которое необходимо для электролитической диссоциации растворителя на паре инертных электродов. Для воды это напряжение составляет 1,23 В при 25°С. Если к паре платиновых электродов в водном растворе (например, серной кислоты) приложить разность потенциалов, превышающую 1,23 В, вода начнет разлагаться с выделением кислорода на аноде и водорода на катоде. Однако на многих металлах скорость выделения водорода чрезвычайно мала. По этой причине эффективная область идеальной поляризуемости ртутного электрода простирается вплоть до потенциалов, примерно на 1В отрицательнее потенциала выделения водорода. Область положительной поляризации ртути ограничена не выделением кислорода, а анодным окислением металла с образованием либо ионов ртути(I) (как в растворах нитратов), либо нерастворимых солей ртути(1) (как в растворах хлоридов). В некоторых растворах полный диапазон идеальной поляризуемости ртутного электрода превышает 2 В. Такой электрод, конечно, не является полностью идеально поляризуемым, так как при потенциалах более отрицательных, чем обратимый водородный потенциал, будет наблюдаться выделение водорода, хотя и медленное. Кроме того, различные примеси, от которых невозможно полностью избавиться, в особенности кислород, реагируя на электроде, создают электрический ток. Впрочем, практически ртутный электрод можно считать идеально поляризуемым во многих растворах электролитов. [c.52]

    Ясно, что чем больше электростатическое взаимодействие ионов, тем меньше должна быть степень диссоциации. Но диэлектрическую проницаемость нельзя считать единственным фактором, влияющим на электролитическую диссоциацию, так как в большинстве случаев диссоциация является сложной функцией специфических свойств как растворителя, так и растворяемого соединения, а также функцией их взаимодействия. [c.439]

    Как видим, в теории электролитической диссоциации растворитель играет опреде-растворителя ляющую роль в проявлении растворенным веществом кислотных либо основных свойств. Это означает, что рамки теории ограничивают лишь такие случаи взаимодействия, которые осуществляются в растворах. А ведь последнее вовсе не обязательно. Но разве взаимодействие в отсутствие растворителя всегда невозможно  [c.9]

    Все вышеизложенное и составило основу теории электролитической диссоциации Аррениуса. В ней не учитывается взаимодействие между ионами в растворе и между ионами растворенного вещества и растворителем. Поэтому в том виде, в котором излагал ее Аррениус, эта теория охватывала лишь крайне разбавленные растворы слабых электролитов. [c.168]

    В непосредственной близости от иона располагается структурированный растворитель. Число его частиц, находящихся в этом сольватном слое, называется координационным числом сольватации. Для большинства катионов оно равно 4, 6 или 8. При записи различных уравнений (электролитической диссоциации, взаимодействий между ионами) обычно координационная сфера ионов не указывается. [c.170]

    Константа электролитической диссоциации К является характерной величигюй для данного электролита и растворителя и зависит лишь от температуры. Повышение температуры оказывает различное влияние на К (рис. 59). Для многих веществ К проходит через максимум. В соответствии с принципом Ле Шателье это объясняется переменой знака ДЯрасти, связанной с различным влиянием температуры на электролитическую диссоциацию молекул и на гидратацию ионов. [c.179]

    В молекулах или в кристаллах соединений с и о и н о й связью содержатся не нейтральные атомы элементов, а их ионы, и, например, хлористый натрий состоит из ионов Na+ и С " не только в водных растворах, но и в любом его состоянии. Из этих ионов состоят, в частности, и кристалл поваренной соли и молекулы Na l в парах. Таким образом, в отношении ионных соединений развитие электронной теории валентности избавило гипотезу электролитической диссоциации от задачи объяснить процесс образования ионов, так как при растворении такого электролита происходит лишь разъединение ионов, а не образование их. Переход ионов в раствор происходит в результате взаимодействия их с молекулами растворителя, в результате образования связей между ионом и молекулами растворителя (сольватация ионов) и, в частном случае, молекулами воды (гидратация ионов). [c.383]

    Действие растворителя на растворенное вещество настолько велико, что может вызывать электролитическую диссоциацию веществ, не обладающих ионным типом связи. Например, полярные молекулы хлороводорода, растворяясь в воде, разрываются ее молекулами на ионы. При растворении хлороводорода в бензоле, являющемся менее полярным растворителем, чем вода, диссоциации молекул не происходит. Поэтому раствор хлороводорода (кислота) в воде проводит электрический ток, а в бензоле нет. [c.69]

    Ионизация и диссоциация веществ в растворе. В растворах, как и в индивидуальных жидкостях, взаимодействие молекул может сопровождаться их ионизацией. Распад вещества на сольватированные ионы Под действием молекул растворителя называется ионизацией веществ в растворах или электролитической диссоциацией. [c.160]

    Главный недостаток теории электролитической диссоциации, и вместе с тем причина всех ее недостатков, заключается в игнорировании взаимодействия частиц растворенного вещества между собой, а также с молекулами растворителя. Все эти противоречия были в дальнейшем в значительной степени устранены в так называемой теории сильных электролитов. [c.114]

    Согласно теории электролитической диссоциации электролиты при растворении в воде или других растворителях распадаются на ионы, число которых, а также величина и знак заряда определяются их природой. Этот процесс называется электролитической диссоциацией. Между ионами и недиссоциированными молекулами устанавливается равновесие, которое можно выразить своего рода химической реакцией, подчиняющейся закону действующих масс. [c.7]

    Теория электролитической диссоциации не учитывает силы взаимодействия между ионами, а также между ионами и молекулами растворителя, поэтому ее применение ограничивается разбавленными растворами слабых электролитов. Кроме того, эта теория не раскрывает причин, вызывающих диссоциацию. [c.8]

    Электролитами называются вещества, распадающиеся в растворах полностью или частично на ионы. Распад молекул на ионы под действием молекул воды (или другого растворителя) называется электролитической диссоциацией. [c.43]

    Величина степени электролитической диссоциации зависит от природы растворенного вещества и растворителя, а также от концентрации и температуры раствора. Если вещество не диссоциирует при растворении (п = О, Па = М, а = 0), оно не электролит. Если, а близка к единице, to п N и соединение — сильный электролит.. [c.110]

    Рассмотренные выше представления о кислотах и основаниях, вытекающие из теории электролитической диссоциации Аррениуса, полностью применимы лишь для водных растворов. Детальное изучение процессоъ, протекающих без участия растворителя, а [c.270]

    Можно ли объяснить с позиций теории электролитической диссоциации основные свойства растворов электролитов, не имеющих в своем составе ОН -групп гидролиз, без учета химического взаимодействия растворенного вещества и растворителя  [c.74]

    Гипотеза электролитической диссоциации. В 1805 г. литовский ученый Ф. X. Гроттус, излагая свою теорию электролиза, высказал мнение, что частицы растворенных веществ состоят из положительной и отрицательной частей и под действием электрического поля закономерно, ориентируются, располагаясь цепочками, в которых положительнйя часть каждой частицы направлена к катоду, а отрицательная — ю, аноду. Под действием тока ближайг шие к электродам частицы разрываются и отдают соответствующие ионы электродам остающиеся части их вступают в обмен со следующими частицами. С теми или другими изменениями эти взгляды были общепринятыми до 80-х годов прошлого века. Н. Н. Каяндер установил (1881), что между химической активностью водных растворов кислот и их электропроводностью обнаруживается параллелизм. Он показал также, что кислоты обладают наибольшей химической активностью и наибольшей молярной электропроводностью в наиболее разбавленных растворах и что влияние природы растворителя и на химическую энергию тел и на электропроводность их растворов является аналогичным. Каяндер высказал предположение о возможности диссоциации молекул кислот в растворе, говоря, что в данном объеме раствора кислоты количество частиц, получивших способность обмена (назовем их хоть разомкнутыми частицами), пропорционально количеству прибавленного растворителя и что реагируют только такие разомкнутые частицы .  [c.381]

    В растворах, где в качестве растворителей используются органические жидкости, электролитическая диссоциация при растворении в них веществ не наблюдается (опыты Д, Е и К). Степень электролитической диссоциации ледяной уксусной и концентрированной серной кислот очень мала и потому они слабо проводят электрический ток. Однако по мере разбавления этих кислот водой диссоциация их молекул на ионы сильно увеличивается, возрастают (опыты Ж, 3 и И) и их электропроводности. Однако при дальнейшем разбавлении, достигнув определенного максимального значения, электропроводность постепенно уменьшается. Объясняется это тем, что при разбавлении увеличение концентрации ионов в растворе происходит за счет увеличения степени электролитической диссоциации электролита. Последующее уменьшение величины электропроводности при дальнейшем разведении электролита объясняется общим уменьшением концентрации ионов в единице объема раствора. [c.63]

    Из сказанного ясно, что для осуществления электролитической диссоциации определяющую роль играет взаимодействие ионов с растворителем (в водных растворах — гидратация, в об щем случае — сольватация). На важное значение гидратации ионов впервые указали И. А. Каблуков (1891) и В. А. Кистя ковский (1888—1890). Они положили начало развитию теории электролитов в направлении, которое указывал Менделеев, т. е. объединили так называемую сольватную теорию и физическую теорию Вант-Гоффа — Аррениуса.  [c.392]

    Установив, что значения коэффициентов I, полученные измерением понижения точки отвердевания, совпадают с подсчитанными им самим на основании его данных по электропроводности, т. е. что растворы электролитов ведут себя аналогично и при пропускании электрическаго тока, и в его отсутствие, Аррениус пришел к выводу, что диссоциация молекул растворенных электролитов на ионы происходит не под действием тока (как считали в то время), а уже при самом растворении, независимо от того, пропускаТот через раствор электрический ток или нет. Такой распад молекул электролитов на ионы в среде растворителя получил название электролитической диссоциации (или ионизации). Благодаря этому процессу в растворе увеличивается число частиц, в результате чего коэффициент г принимает значения, большие единицы. [c.247]

    Нэ1е ионы под действием молекул растворителя называется ионизацией веш,гства в растворах или электролитической диссоциацией. [c.128]

    Основным источником заряженных частиц в нефтяных системах являются процессы гомолитической диссоциации образующих их соединений аналогичные электролитической диссоциации и протекающие в различных растворителях и при различной температуре с образованием свободных радикалов. Количество парамагнитных частиц возрастает по мере утяжеления нефтяных фракций и составляет в единицах 10 спин/г в прямогонных бензинах—10 , бензинах вторичного происхолс-дения—10- -н 10 3, в сырых нефтях и прямогонных тяжелых газойлях в остатках перегонки—в ас- [c.158]

    Непостоянство констант диссоциации, которое наблюдалось у многих слабых электролитов уже в области умеренных концентраций, также связано с проявлением этих взаимодействий и, в частности, сил межионного взаимодействия, не предусмотренного и неучитываемого классической теорией электролитической диссоциации. С увеличением концентрации электролита количество ионов в растворе увеличивается и ин-Еенсивность их взаимодействия между собой и с растворителем возрастает, что вызывает изменение константы диссоциации и ряда других эффектов (эффекты неидеальности). Отклонения от идеальности количественно учитывают с помощью коэффициентов активности 7 (см. с. 365). Поэтому классическую константу диссоциации слабого электролита [см. уравнение (152.4)] следует заменить на истинную термодинамическую константу диссоциации К°, выраженную через активности участников процесса  [c.432]

    В нефтяных растворах могут протекать (при изменении температуры и состава растворителя) процессы равновесной гемолитической диссоциации, аналогичные электролитической диссоциации, сопровождающиеся появлением в растворе различного количества свободных радикалов, Гомолитической диссоциации подвергаются углеводороды, имеющие низкую энергию разрыва связей [77]. [c.41]


Смотреть страницы где упоминается термин Электролитическая диссоциация и растворитель: [c.46]    [c.47]    [c.393]    [c.166]    [c.382]    [c.181]    [c.240]    [c.51]   
Смотреть главы в:

Курс общей и неорганической химии -> Электролитическая диссоциация и растворитель




ПОИСК





Смотрите так же термины и статьи:

Растворитель н диссоциация

Электролитическая диссоциаци

Электролитическая диссоциация



© 2025 chem21.info Реклама на сайте