Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы теплообмена и теплопередачи

    Разработка математической модели теплообменного аппарата осложняется спецификой конструкционного оформления и назначения, а именно родом теплоносителей, способом интенсификации процесса теплообмена, гидродинамическим режимом потоков, характером передачи тепла, конфигурацией и компоновкой поверхностей теплообмена, количеством ходов и направлением потоков тепло- и хладагентов, материалом аппарата и т. д. В основе методов расчета теплообменников лежит использование соответствующей модели структуры потока (см. табл. 2.1) с учетом источника тепла, описываемого уравнением теплопередачи [c.92]


    Авторы в основном придерживались терминологии, установившейся в науке о ПАХТ, не отказываясь вместе с тем от ее изменения и уточнения там, где это представлялось целесообразным. Так, в главах "Основы теплопереноса", "Теплопередача и теплообмен" разведены (им придан конкретный смысл) понятия "теплоперенос", "теплоотдача", "теплопередача", "теплообмен". [c.20]

    Авторами дается упрощенное толкование теории подобия. Более обстоятельно она изложена в книгах М. В. К и р п и ч е в, Теория подобия, изд. АН СССР, 1953 М. А. Михеев, Основы теплопередачи, Госэнергоиздат, 1956 Г. Г р е б е р, С. Э р к, У. Г р и г у л л ь, Основы учения о теплообмене и др.— Прим. ред. [c.30]

    Более детально НУ и ГУ различных видов будут рассмотрены и использованы в общих главах "Гидравлика", "Основы теплопереноса , "Теплопередача и теплообмен", "Основы массопереноса", а также в ряде других глав — для решения конкретных научных и технологических задач. [c.99]

    Определение коэффициентов тенло-и массопередачи в уравнениях (II.1)—(П.З) является главной задачей исследования кинетики этих процессов. В основу исследования положен метод аналогии процессов массо- и теплопередачи при их совместном протекании (см. табл. II.1) и анализ кинетических уравнений, характеризующих теплообмен в двухфазной системе Ж—Г [30, 38, 173 и др.]. Коэффициенты теплопередачи и массопередачи при теплообмене р учитывают влияние гидродинамических, физических, физико-химических и геометрических факторов на скорость процессов тепло- и массообмена, выражаемую уравнениями (II.1) и (П.З). В общем случае для теплопередачи при пенном режиме [c.95]

    Рассмотрим с позиций системного анализа общую схему расчета теплообменных аппаратов. Основу расчета составляют математические модели, описывающие собственно процессы теплообмена и теплопередачи, а также модели гидродинамической структуры потоков теплоносителей в теплообменниках. Структурную схему построения модели теплообменного аппарата в целом можно представить в виде, изображенном на рис. 3.9. Последовательность проектного расчета включает составление теплового баланса по всем потокам, приносящим и отводящим тепло [c.122]

    Поверхность дефлегматора и кипятильника подсчитывали на основе уравнения теплопередачи. Массу теплообменной аппаратуры находили по формуле  [c.136]

    Изложены основанные на системном анализе принципы развития теории расчета теплообменного оборудования с использованием новых функциональных классификаций на базе обобщенных структур этих расчетов и ограниченного числа специфических модулей. Описан новый подход к решению различных задач теплового расчета теплообменных объектов любой сложности на основе обобщенной системы расчета теплопередачи, связывающей в единое целое расчеты в сечении теплопередающих поверхностей произвольной формы, элементарных схемах тока сред, рядах и комплексах аппаратов. [c.2]


    Рассмотрены элементы технической гидравлики перемещение жидкостей сжатие и разрежение газов перемешивание разделение неоднородных смесей основы теорий теплопередачи и мас-сообмена теплообменные аппараты процессы выпаривания, абсорбции, дистилляции и ректификации, экстракции, адсорбции, сушки, кристаллизации, холодильные, измельчения твердых материалов и их классификации. [c.200]

    Значение теплопередачи в химической промышленности очень велико. На основе законов теплопередачи по формулам рассчитываются теплообменные аппараты (теплообменники, конденсаторы), нагревательные устройства (печи, сушилки), аппараты, имеющие рубашки для охлаждения (полимеризаторы), и др. [c.34]

    Расчет коэффициента теплоотдачи а и коэффициента теплопередачи к предполагает, что теплообмен происходит через идеальные поверхности и что известны точные значения соответствующих теплофизических характеристик веществ. Однако в действительности качество поверхностей не является идеальным и теплофизические константы точно не известны. В результате этого в тепловых расчетах теплообменника имеется известная неуверенность, которая, однако, не должна привести к тому, чтобы расчет рассматривался как предварительный, или чтобы в основу его были положены большие коэффициенты запаса. [c.166]

    Основная цель настоящей монографии — описание новых, более эффективных принципов решения проблем разработки автоматизированных систем оптимизации промышленного теплообменного оборудования. Принципы решения проблемы основаны на идее синтеза любых существующих и перспективных видов расчета аппаратов при использовании структурной основы синтеза — обобщенных структур расчетов и ограниченного числа модулей (теплопроводности, теплопередачи в сечении, элементах, рядах и комплексах, гидравлических, экономических, вспомогательных расчетов и др.). [c.9]

    Расчет теплопередачи для любых видов тока на основе ступенчатого метода. В предыдущих разделах путем решения дифференциального уравнения теплопередачи получены зависимости для расчета теплообменных аппаратов с различными схемами взаимного тока теплоносителей. Результаты показывают, что даже для сравнительно простых схем тока получаются весьма громоздкие выводы и уравнения. Для более сложных случаев дифференциальное уравнение теплопередачи либо вообще не может быть решено в элементарных функциях, либо решения имеют столь громоздкий [c.29]

    Часто неудовлетворительная конструкция аппарата получается в тех случаях, когда необходимо осуществить теплообмен мteждy технологическим потоком, имеющим большой расход, но малое изменение температуры, и потоком, имеющим малый расход, но большой диапазон изменения температуры. Примером такого аппарата может служить высокотемпературный конденсатор, охлаждаемый водой. В таких условиях наряду с различными схемами тока теплоносителей полезно рассмотреть вопрос о замене охлаждающей среды, например вопрос о целесообразности использования воздушного охлаждения, вместо водяного. , -Задача выбора рациональных скоростей теплоносителей может быть обоснованно решена только путем проведения оптимального расчета, на основе сравнения большого количества конкурирующих вариантов. Пределы скоростей, приведенные выше, имеют сугубо ориентировочный характер. Увеличение скоростей потоков лимитируется, как правило, повышением гидравлических сопротивл е-ний, поэтому верхний предел скорости ограничен располагаемым снижением давления. В конвективных теплообменниках следует наилучшим образом разрешить компромисс между величиной гидравлического сопротивления и коэффициентом теплоотдачи. Например, коэффициент теплоотдачи от жидкости или газа, текущих в межтрубном пространстве, пропорционален скорости потока в степени 0,6. Гидравлическое сопротивление пропорционально квадрату скорости. Отсюда следует, что чем выше доиуекаемое гидравлическое сопротивление, тем более высокого значения, коэфг фициента теплоотдачи можно достичь. Следует, однако, иметь в виду, что коэффициент теплоотдачи от данного потока может весьма слабо влиять на значение общего коэффициента теплопередачи (не быть лимитирующим).  [c.339]

    Для кожухотрубчатых теплообменных аппаратов были проведены испытания, которые показали удовлетворительное соответствие расчетных и измеренных в промышленных условиях коэффициентов теплопередачи и гидравлических сопротивлений. Ниже изложена методика расчета, рекомендованная на основе этих исследований. [c.600]

    Важнейшей составной частью расчета поверхностных теплообменных аппаратов является расчет гидравлических сопротивлений потоку теплообменивающихся сред. Только на основе теплового и гидравлического расчетов может быть выбран оптимальный режим работы теплообменных аппаратов. Высокие скорости движения теплообменивающихся сред обеспечивают высокий коэффициент теплопередачи и уменьшение необходимой поверхности аппарата. Однако с повышением скорости резко возрастают гидравлические сопротивления, а следовательно, и расход энергии на их преодоление, что обычно и лимитирует значение скорости движения потока. [c.616]


    Теплообмен при кипении — это сложный и недостаточно изученный процесс. На основе сочетания данных теоретических и экспериментальных исследований с теорией подобия получены обобщенные критериальные зависимости, позволяющие с достаточной для практических целей точностью рассчитать коэффициент теплоотдачи при кипении ац. Поскольку вопросы теплоотдачи при конденсации пара освещены в предыдущей главе, ограничимся здесь кратким изложением вопросов теплоотдачи при кипении. Анализ отдельных термических сопротивлений теплопередаче в выпарных аппаратах с паровым обогревом показывает, что наибольшее значение имеет термическое сопротивление теплоотдаче при кипении Яг- Характерные особенности процесса теплоотдачи при кипении следующие. [c.197]

    Иногда требуется выяснить эффективность работы действующей установки в целом или отдельного аппарата. В этих случаях проводится обследование установки или аппарата, заключающееся в снятии ряда показателей работы—давлений, температур, расходов, состава потоков и т. д. и проведении на их основе поверочных расчетов для установления фактических значений таких показателей, как материальные и тепловые потери, коэффициенты полезного действия, коэффициенты скорости процесса (например, для теплообменных аппаратов — коэффициенты теплопередачи) и т. д. [c.8]

    При подборе теплообменного оборудования рассчитывают тепловую нагрузку узла и средний температурный напор коэффициент теплопередачи принимают на основе производственных (или литературных) данных. Далее рассчитывают требуемую поверхность теплопередачи и сопоставляя ее с поверхностью теплопередачи серийных аппаратов, принимают рещение о типоразмере и числе конкретных аппаратов с учетом резерва. [c.8]

    Теплопередающие трубы применяют в тех случаях, когда необходимо с относительно малых площадей теплопередачи снимать большие тепловые нагрузки, для создания систем термостабилизации различных объектов и т.п. При этом следует учитывать, что лимитирующими стадиями процесса теплопереноса в аппаратах с тепловыми трубами обычно являются подвод теплоты к наружной поверхности зоны испарения и отвод теплоты от наружной поверхности зоны конденсации. Кроме того, возможны ограничения применения тепловых труб вследствие высокого термического сопротивления материала фитиля. Поэтому иногда роль фитиля выполняют мелкие продольные канавки различной формы на внутренней стенке тепловой трубы, что существенно усложняет конструкцию этих устройств и увеличивает гидравлическое сопротивление при движении жидкости вдоль канавок. К недостаткам аппаратов на основе тепловых труб следует также отнести тот факт, что значительная часть труб в теплообмене с воспринимающей средой не участвует. [c.358]

    Перенос теплоты детально изучается в главах "Основы теплопереноса" и "Теплопередача и теплообмен". Кардинальной проблемой при анализе теплопереноса является определение температуры в интересующей нас точке технологического пространства в произвольный момент времени  [c.83]

    Глава 1. ОСНОВНЬШ ПОНЯТИЯ И СООТНОШЕНИЯ Глава 2. ГИДРАВЛИКА Глава 3. ПЕРЕМЕЩЕНИЕ ЖИДКОСТЕЙ Глава 4. СЖАТИЕ ГАЗОВ Глава 5. ГИДРОМЕХАНИЧЕСКИЕ ПРОЦЕССЫ Глава 6. ОСНОВЫ ТЕПЛОПЕРЕНОСА Глава 7. ТЕПЛОПЕРЕДАЧА И ТЕПЛООБМЕН Глава 8. СТРУКТУРА ПОТОКОВ Глава 9. ВЬШАРИВАНИЕ Глава 10. ОСНОВЫ МАССОПЕРЕНОСА Предметный указатель [c.891]

    Математические модели теплообменных аппаратов строятся на основе уравнений теплового баланса и теплопередачи. Уравнения теплового баланса составляются на основс уравнений гидродинамики аппаратов с учетом тепловой емкости потоков, аккумулирования тепла в неподвижных разделяющих стенках и тепловых эффектов химических реакций. Передача теплового потока от одного теплоносителя к другому осуществляется как за счет конвекции подвижных сред, так и за счет теплопроводности в материале разделяющей стенки. [c.53]

    Следовательно, предложенные в главах 6—8 методы расчета теплопередачи в элементарных схемах тока, рядах и комплексах аппаратов положены в основы единой системы теплового расчета теплообменников и использованы в современных алгоритмах оптимизации теплообменных аппаратов кожухотрубчатых (шифр ОКТА), витых (шифр ОВТА), пластинчатых (шифр ОПТА), воздушного охлаждения (шифр ОАВО), труба в трубе (шифр ОТТТ). Эти алгоритмы разработаны в Институте газа АН УССР (г. Киев) при участии Уфимского филиала ВНИИНефтемаш и других организаций. [c.213]

    После сбора экспериментального материала предварительно сравнивают коэффициент теплопередачи, рассчитанный на основе измерений, и проектный К- Существенное расхождение между ними можно объяснить отличием реальных физических свойств участвующих в теплообмене сред, скоростей потоков, входных температур или геометрических характеристик ТА от принятых при проектировации. [c.119]

    Расчет теплообменной аппаратуры. ПоСтанОйкй задачи сро ёктного расчета теплообменного оборудования узла ректификации формулируется следующим образом [69]. Для всех аппаратов известны расход, начальная и конечная температура основного технологического потока, начальная температура тепло- или хладагента, а также теплофизические свойства обоих потоков. Требуется определить оптимальные в экономическом отношении параметры всех аппаратов и режимы их работы, под которыми понимаются расход и конечная температура хлад- или геплоаген-та. Алгоритм построен по модульному принципу и включает в себя расчет поверхности теплообмена кипятильника, конденсатора, подогревателя-холодильника конвективного типа, выбора стандартного аппарата. В основу расчетной части алгоритма положены известные критериальные соотношения [70, 71] и уравнение теплопередачи, записанное в дифференциальной форме  [c.151]

    При исследовании на основе математических моделей йроцес-сов, протекающих в реакторах без перемешивания в направлении потока, рассмотрим три случая теплообмен осуществляется через поверхность теплопередачи теплообмен происходит при непосредственном контакте с движущейся насадкой и процесс проводится в адиабатических условиях. [c.133]

    Наибольшую трудность представляет определение оптимального числа взвёшивапия ио1ю . Понятно, для производственных условий действительная скорость должна быть значительно выше скорости взвешивания Ша и много меньше скорости, соответствующей уносу зерен и у особенно это относится к полидисперсным материалам. Следует учитывать, что при росте ю снимаются внешнедиффузионные торможения и растет к [в формуле (1)], но одновременно уменьшается Ас вследствие перемешивания газовой фазы и растет гидравлическое сопротивление слоя, так как при данной объемной скорости высота исходного слоя Но пропорциональна IV. Увеличение т вызывает рост HyJ и, следовательно, рост общей высоты аппарата сильно возрастает истирание зерен. Для выравнивания температуры в слое IV должна быть в среднем раза в два больше, чем г в, а максимальные коэффициенты теплопередачи от взвешенного слоя к теплообменным поверхностям достигаются при и /ц в 4—6 [9, 10]. Следо вательно, оптимальное число взвешивания (и размер зерен катализатора) следует определять на основе многократных технологических и экономических расчетов с учетом противоречивого влияния 1р1юв на различные параметры технологического режима. [c.296]

    ТЕПЛОПЕРЕДАЧА, см. Теплообмен. ТЕПЛОПРОВОДНОСТЬ, см. Теплообмен. ТЕПЛОСТОЙКОСТЬ полимеров, Т. стеклообразных н кристаллич. иолимеров — сиособиость сохранять твердость (т. е. не размягчаться) прп повышении т-ры. Количеств, критерий Т. в атих случаях — т-ра, ири к-рой деформация образца в условиях действия пост, нагрузки не превышает нек-рую величину. Верх, предел Т. стеклообразных полпмеров — стеклования температура, кристаллических — т-ра плавления (см. Плавление). Определяют Т. стандарти-зов. методами, иаир. по Мартенсу или ири изгибе образца. Значения Т. ио Мартенсу для нек-рых термопластов (в °С) винипласт — 65—70, иоли-е-капроамид — 50—55, поликарбонат па основе бисфенола А — 115—125, полиметилметакрилат — 60—80, полистирол — 80. [c.564]

    В другом случае Р. Висканта [47], желая установить суммарный эффект взаимодействующих В(идов теплопередачи (теплопроводностью, конвекцией и излучением) в аналогичной мО Дели, также лолучил интегро-дифферен-циальное уравнение, которое по методу Барбье было преобразовано в нелинейное дифференциальное. На основе решения численных примеров автор показал влияние на теплообмен и на распределение температур в излучающей среде параметров системы и предложил два приближенных метода. [c.54]

    Обтекание пластинки с теплообменом и без теплообмена изучалось также для чисел М до 10 и л = 0,76 [54], для М до 3,16 при Рг = 0,733 и и = 0,768 [53], при Рг = = 0,725 и п=1,5 1,0 0,75 0,5[48], при Рг=1 и произвольном п и при произвольных числах Рг и п = 1 [56], при Рг = 0,7б и и = 0,89 [57], при Рг = 0,75 и зависимости вязкости от температуры по Сэзерленду [58[. Особенный интерес представляют результаты работ [59, 60]. В первой из них данные для трения и теплоотдачи получены с учетом действительного изменения свойств воздуха от температуры для широкого диапазона чисел М от 1 до 20. Во второй работе расчеты трения и теплопередачи по уравнениям газодинамического пограничного ламинарного слоя проведены при помощи счетных машин для решения дифференциальных уравнений. Расчеты охватывают числа М от 1 до 20 с учетом изменения с температурой вязкости, числа Рг и других п араметров воздуха на основе экспериментальных данных до 1000° К и при температурах от 1000 до 1700°К, — на основе расчетов по кинетической теории газов. В области высоких температур воздух предполагался диссоциированным, исходя из чего учитывалось и влияние диссоциации на изменение свойств воздуха с температурой. Результаты подобного рода расчетов даны в виде таблиц и графиков. Из них видно, что при больших [c.265]

    Рассмотрены теоретические основы построения, математического описания и инженерного расчета основных химико-технологических процессов, а также принципы устройства и функционирования технологической аппаратуры. Приводятся материалы, раскрывающие основные понятия и соотношения, основы тепло- и мас-сопереноса, где даны основные закономерности переноса импульса, теплоты, вещества. Особое внимание уделяется вопросам гидравлики, перемещения жидкостей, сжатия газов, гидромеханическим процессам, теплопередаче и теплообмену, структуре потоков, а также выпариванию. [c.2]


Библиография для Основы теплообмена и теплопередачи: [c.91]    [c.363]    [c.361]    [c.362]    [c.322]    [c.284]   
Смотреть страницы где упоминается термин Основы теплообмена и теплопередачи: [c.3]    [c.295]    [c.174]    [c.249]    [c.647]    [c.531]    [c.79]    [c.24]   
Смотреть главы в:

Устройство и эксплуатация холодных установок -> Основы теплообмена и теплопередачи




ПОИСК





Смотрите так же термины и статьи:

Теплопередача



© 2025 chem21.info Реклама на сайте