Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия в подвижной жидкой среде

    Неоднократно делались попытки связать состав газов и их возраст какими-либо закономерностями. Самая идея подобного взаимоотношения правильна, потому чтд деградация молекул продолжается в течение всей геохимической истории нефти, хотя и замедляется в конце процесса. Теоретически можно ожидать, что древние газы должны содержать больше ближайших гомологов метана, чем газы начальных этапов превращения. Можно также ожидать, что переход азотистых соединений в азот должен относительно увеличить концентрацию азота в древних газах. Возможно, что подобное положение вещей и удалось бы показать анализами газа, однако на пути решения подобной задачи появляется множество затруднений во-первых, газ представляет собой подвижную систему углеводородов, смесь которых неизбежно должна менять свой состав в зависимости от давления и температуры, особенно при наличии такого растворителя, как нефть во-вторых, миграция газа связана с своеобразным хроматографическим разделением компонентов вследствие различий в молекулярном весе и вязкости компонентов в-третьих, в каждом месторождении можно предполагать частичное удаление наиболее легких компонентов (метана) в силу диффузии и подобных явлений, наконец, нельзя не считаться с тем, что нет практической возможности принимать известным количественное соотношение между газообразными и жидкими углеводородами нефти. Все это приводит к тому, что всякая проба газа, отобранная для исследования, будет случайной, т. е. обособленной от той среды, из которой она взята. Тем не менее изучение состава природных газов иногда позволяет наметить кое-какие закономерности, отражающие действительное положение дела. [c.77]


    Диффузия в подвижной жидкой среде [c.16]

    Влияние температуры детально рассматривается в [300]. При нагревании, как правило, снижается межфазная энергия за счет увеличения взаимной растворимости фаз, уменьшается вязкость жидкостей, возрастают коэффициенты объемной и поверхностной диффузии все это способствует снижению прочности твердых тел. К этому надо добавить, что очень яркие эффекты, состоящие в резком падении прочности, наблюдаются при нагревании минералов, содержащих связанную воду (серпентинита и др.), выше точки дегидратации, когда вода освобождается и приобретает подвижность [253]. Вместе с тем повышение температуры может и ослаблять влияние активной среды. Нагревание уменьшает адсорбцию и, следовательно, смесь активного вещества с неактивным при повышении температуры может действовать хуже. Увеличение коэффициентов диффузии может привести к тому, что жидкая фаза будет быстрее рассасываться в твердом теле, проникая в него через стенки трещины, что вызовет прекращение ее роста. [c.98]

    Зависимость Я от у в жидкостной хроматографии имеет несколько иной вид (рис. 3.12, кривая 2). На ней при практически реализуемых скоростях подвижной фазы закономерно отсутствует восходящая начальная ветвь, определяемая продольной диффузией в подвижной фазе, скорость которой в жидких средах относительно мала. [c.184]

    Как уже отмечалось, диффузия в жидких и твердых телах независимо от их химической природы и фазового состояния осуществляется путем обмена мест между молекулой диффундирующего вещества и молекулами диффузионной среды под влиянием градиента концентрации и кооперативного теплового движения окружающего комплекса молекул. Особенность высокомолекулярных тел как диффузионных сред для большинства анализируемых систем обусловлена прежде всего огромной разницей в размерах макромолекул диффузионной среды и диффундирующих молекул. Очевидно, что в этих системах перемещение мигрирующей молекулы связано с обменом места не с целой макромолекулой, а лишь с ее небольшой частью — звеном, группой звеньев или иной структурной единицей. Скорость процессов структурной перегруппировки связана с сегментальной подвижностью, которая в свою очередь определяется средней долей свободного объема диффузионной среды. Накопленный в настоящее время экспериментальный материал позволяет рассматривать / или Уев как некоторую количественную интегральную характеристику кинетических свойств полимерных тел Г29, 36, 183]. Напомним, что аналитическое выражение этой связи в нашем случае дается выражением (1.43). Отметим полуколичественный характер теории свободного объема, связанный с тем, что она не позволяет получать абсолютных значений коэффициентов диффузии, а рассматривает лишь их изменение относительно некоторого состояния под влиянием тех или иных факторов. Достоинство этой теории состоит в том, что она позволяет на основе простейших предположений получать аналитические выражения для интерпретации экспериментальных данных, построить стройную схему расчетов диффузионных свойств практически любых по составу, строению и структуре полимерных матриц, резко сократить число систем, подлежащих экспериментальному исследованию. [c.115]


    Процесс конвективной диффузии к границе раздела жидкость-жидкость (жидкость-газ) существенно отличается от диффузии к границе раздела жидкость-твердое тело. Это связано с различием гидродинамических условий на поверхностях раздела фаз. Непосредственно на поверхности твердого тела в силу условия прилипания скорость движения жидкости всегда равна нулю. Напротив, граница раздела двух жидких сред сохраняет свою подвижность, и касательная [c.158]

    Кроме этого, молекулы белков и липидов очень быстро вращаются вокруг своих продольных осей (вращательная диффузия). Перескок липидных молекул из одного монослоя в другой (флип-флоп) осуществляется редко, а белки, по-видимому, к такому перескоку вообще не способны. Причина исключительно медленного флип-флопа заключается в его энергетической невыгодности, поскольку необходимо перенести полярную головку молекулы липида через гидрофобную область бислоя. Подвижность липидных молекул тесно связана с фазовыми переходами в мембране, т. е. изменением ее состояния из жидкокристаллического в кристаллическое (или гелеобразное). Основным фактором, вызывающим фазовые переходы мембранных липидов, является изменение температуры среды. Значение температуры, при которой происходит переход данного липида из кристаллического в жидкокристаллическое состояние (и обратно), называется температурой фазового перехода гель — жидкий кристалл (рис. 22.4). [c.307]

    Исследования клеточного эффекта в полимерах немногочисленны. В полимере клетка формируется сегментами макромолекул, диффузия радикалов из клетки зависит не от макроскопической вязкости среды, а от сегментальной подвижности. Поэтому вероятность выхода радикалов в объем целесообразно сопоставлять с молекулярной подвижностью радикалов. Последнюю можно оценить методом спинового зонда [19]. Поскольку молекулярная подвижность в полимерах на 2-3 порядка меньше, чем в жидкости, клеточный эффект в полимерах проявляется более ярко. Действительно, в полимерах е = 0.01+0.1, в жидкой фазе е = 0.3 + 0.8. [c.204]

    Перенос реагирующих веществ из газового (жидкого) потока на поверхность катализатора зависит от характера движения газа (жидкости) в каналах, образуемых зернами катализатора. При турбулентном движении в объеме газовой (жидкой) фазы благодаря конвекционному перемешиванию происходит выравнивание концентраций. Вблизи поверхности при ламинарном движении слой газа (жидкости) теряет свою подвижность и перенос вещества может осуществляться только исключительно за счет диффузии молекул сквозь приповерхностный слой (I) среды с коэффициентом молекулярной диффузии (О). [c.673]

    Теоретически прочность определяется наиболее слабыми связями внутри тела. Однако практически на нее оказывают влияние наличие неоднородностей, характер физической (надмолекулярной) структуры (исключая молекулярную ориентацию), наличие молекулярной ориентации, релаксационные свойства, воздействия внешней среды (химические и энергетические). Хрупкое разрушение материалов, т. е. разрушение при очень малых упругих деформациях и, следовательно, в отсутствие остаточных деформаций, имеет место, когда скорость воздействия силы превышает скорость релаксации элементов материала, по которым идет разрушение, т. е. релаксационные свойства полимера в этих условиях мало проявляются. Хрупкое разрушение эластомеров обычно происходит либо при низких температурах, либо при очень быстрых силовых воздействиях, либо при действии концентраторов напряжения. В этих условиях снижается роль активных жидких и газообразных сред как вследствие уменьшения релаксационной способности полимера, затруднения диффузии из-за резкого снижения молекулярной подвижности при низких температурах, так и из-за кратковременности процесса разрушения при быстрых воздействиях. [c.13]

    Подвижность атомов в твердой среде значительно меньше, чем в жидкой. В связи с этим при фазовых превращениях диффузионного типа образование зародышей (т. е. создание флуктуационных областей необходимого состава) и их последующий рост определяются скоростями диффузии. Фазовые превращения в сплавах могут быть реализованы в твердом состоянии также при значительных переохлаждениях. Если переохлаждения велики, то диффузионные процессы полностью подавляются. В этом случае в зависимости от условий фазовое превращение оказывается или полностью заторможенным или протекает бездиффузионным путем по мартенситному типу. [c.336]

    Фазовое состояние адсорбируемого вещества влияет на длительность процессов массопередачи, или массопереноса. В жидкой фа. зе подвижность адсорбируемых молекул очень мала. Скорость диффу. зии, а следовательно, и кинетика адсорбции в жидкости значительно ниже, чем в га. зовой среде. Скорость прохождения поглощаемого вещества чере з адсорбент в жидком состоянии должна быть значительно ниже, чем в га зовом, что требует большой высоты слоя адсорбента. Поэтому чаще всего адсорбция прои зводится в га зовой (паровой) фа зе. При этом для снижения температуры адсорбции на практике применяют адсорбцию в среде газа-носителя, который ускоряет диффузию молекул адсорбируемого вещества, снижает его парциальное давление в потоке. [c.208]


    Как уже отмечалось, твердофазное взаимодействие, в отличие от реакций в жидкой или газовой среде, складывается из двух фундаментальных процессов собственно химической реакции и переноса вещества к реакционной зоне. Так как массоперенос осуществляется путем диффузии, а диффузионная подвижность частиц твердого тела зависит от дефектности его структуры [3, 5, 57], можно ожидать существенного влияния дефектов на механизм и кинетику твердофазных реакций. Это и наблюдается в действительности. [c.110]

    Обрыв радикальной полимеризации осуществляется главным образом при бимолекулярном столкновении радикальных концевых групп. Радикалы легко соединяются или диспропорционируют, в результате чего исчезают растущие концевые группы макромолекул. Бимолекулярный обрыв сохраняется, пока существует подвижность растущих цепей, хотя снижение подвижности, возможно, уменьшает его скорость. Рекомбинация радикалов — быстрый процесс, и в жидкой фазе его скорость контролируется диффузией. Следовательно, увеличение вязкости среды замедляет обрыв, что в действительности наблюдали при полимеризации в блоке после достижения высоких степеней превращения [1, 2]. Детальное изучение этих систем показало, что увеличение скорости, наблюдающееся при высоких степенях превращения, сопровождается увеличением молекулярного веса продукта. Абсолютное значение константы скорости роста не меняется [3], а абсолютное значение константы скорости обрыва сильно уменьшается. Влияние диффузии на скорость обрыва цепи более сложно, [c.624]

    Для разделения смесей нашли применение в основном два способа электрофореза метод подвижной границы (или свободный электрофорез) и зонный электрофорез. При свободном электрофорезе (в жидкой среде) каждый компонент смеси после разделения имеет лишь одну четкую границу — фронт зоны. Вторая граница (тыл зоны) размыта, и на нее наслаивается фронт следующего компонента. Вследствие этого невозможно выделить чистые компоненты. При зонном электрофорезе получают четкое разделение компонентов смеси на зоны, ограниченные двумя границами ( фронтом и тылом ). Для получения зон с четкими границами ограничивают диффузию различными способами и осуществляют антиконвекционную стабилизацию зон. [c.362]

    Для частиц, радиус которых (г) намного больше радиуса молекул среды, подвижность определяется формулой Стокса 7=1/(6яг)г) и, слгдовательно, 0 = = йТ/(6пг]г). Эта формула делает понятным, почему значения коэффициентов диффузии в жидких металлургических шлаках намного меньше, чем в расплавленных металлах. Вязкость шлаков т), как правило, намного выше вязкости металлов. Это приводит к тому, что в тех случаях, когда скорость переноса определяет скорость какого-либо процесса распределени элемента между шлаком и металлом, оказывается, что самым медленным звеном является диффузия в шлаке. [c.190]

    На разрушение эластомеров в жидких агрессивных средах помимо химической активности среды суш,ественно влияет ее адсорбционная активность и способность вызывать набухание. Кинетика набухания при неполном смачивании, что обычно имеет место в водных растворах, зависит от смачиваюш ей способности, а также связана с подвижностью активных элементов среды. Влияние химической активности видно на примере резины из каучука СКС-30-1 долговечность которой уменьшается с увеличением константы диссоциации кислот (с близкими молекулярными весами, чтобы исключить влияние диффузии). [c.82]


Смотреть страницы где упоминается термин Диффузия в подвижной жидкой среде: [c.347]    [c.47]    [c.305]    [c.302]    [c.47]    [c.248]    [c.455]   
Смотреть главы в:

Коррозия железобетонных конструкций зданий нефтехимической промышленности -> Диффузия в подвижной жидкой среде




ПОИСК





Смотрите так же термины и статьи:

Диффузия в ЖИДК



© 2024 chem21.info Реклама на сайте