Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние растворителя на спектры поглощения органических соединений

    В течение последних восьми лет был достигнут значительный прогресс в изучении влияния растворителей на химические реакции и спектры поглощения органических соединений, а в литературе были описаны многочисленные интересные примеры влияния растворителей. В частности, ставшее возможным благодаря новым экспериментальным методам изучение ионных реакций в газовой фазе позволило непосредственно сравнивать реакции в газовой фазе и в растворе, что в свою очередь привело к лучшему пониманию механизмов реакций в растворах. По этой причине в главы 4 и 5 включено описание ряда газофазных реакций в сравнении с соответствующими реакциями в растворах. [c.8]


    Влияние растворителей на спектры поглощения органических соединений [c.403]

    При изучении спектров поглощения органических соединений в растворителях различной полярности обычно наблюдается влияние природы растворителя на положение, интенсивность и форму полос поглощения [1—4]. Причина этих эффектов заключается в том, что взаимодействия между молекулами растворенного вещества и растворителя (в том числе ион-дипольные, диполь-дипольные, индуцированного и постоянного диполей, водородные связи и т, д.) прежде всего изменяют разность энергий между основным и возбужденным состояниями поглощающих частиц, содержащих хромофор. Влияние среды на спектры поглощения можно изучать, сравнивая спектры в газовой фазе и в растворе или в нескольких растворителях различной природы. Поскольку в больщинстве случаев регистрировать спектры поглощения в газовой фазе не удается, то в этой главе будет рассматриваться только второй метод изучения. Такой подход представляется вполне оправданным, поскольку в последние годы появляется все больше данных, свидетельствующих о непрерывном изменении спектральных характеристик при переходе от изолированных молекул (газовой фазы) к слабо или сильно взаимодействующим жидким средам, если только отсутствуют специфические взаимодействия типа ДЭП/АЭП или образование водородных связей [3]. [c.403]

    Количественная интерпретация спектров поглощения органических соединений, особенно сложных, является трудной задачей и методы квантовой химии дают лишь ее приближенное решение. В связи с этим большое значение имеют различные эмпирические закономерности, связывающие спектр поглощения данного соединения с его строением и позволяющие выяснить влияние различных факторов на этот спектр. Так, накоплен большой материал, показывающий роль электронных взаимодействий и стерических эффектов в молекуле, влияние природы растворителя и ионизации молекулы на спектры поглощения и т. д. Созданы различные схемы классификации полос поглощения, значительно облегчающие расшифровку спектров. [c.53]

    ВЛИЯНИЕ РАСТВОРИТЕЛЕЙ НА ЭЛЕКТРОННЫЕ СПЕКТРЫ ПОГЛОЩЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.106]

    Влияние универсальных взаимодействий на спектр поглощения органического соединения, растворенного в каком-либо растворителе, проявляется главным образом в относительно небольшом смешении полос поглощения и в изменении их интенсивности (см., например, [83]). [c.110]


    Влияние растворителей на электронные спектры поглощения органических соединений. (Обзор.) [c.411]

    В результате широкого теоретического и экспериментального изучения были предложены математические выражения, описывающие влияние растворителей на спектры испускания органических соединений, которые сходны с уравнением (6.2) [4, 13—16, 90]. Так, для описания влияния растворителей на разность между волновым числом поглощения и соответствующего испускания (e- g) в условиях, [c.444]

    Сравнивают полученные результаты с результатами исследования водного раствора того же комплексного соединения и делают заключение о влиянии органического растворителя на спектр поглощения комплекса. [c.126]

    Растворы находят ограниченное применение в инфракрасной спектроскопии, поскольку все органические соединения имеют полосы поглощения в инфракрасной области. Тем не менее для тщательного исследования частей спектров или для количественного анализа, где требуются лишь величины поглощения для нескольких длин волн, подходящий выбор растворителя делает эту методику практически удобной. В некоторых случаях влияния слабых полос поглощения растворителя можно избежать введением поправочных множителей при использовании однолучевого прибора или прямой компенсацией при двухлучевом приборе. [c.253]

    Конечно, даже в таких системах будут наблюдаться различия в поведении экстрагируемых веществ, обусловленные различием во взаимодействии растворителя с растворенным веществом. Хорошо изучены неидеальные растворы, которые образует, например, йод с различными органическими растворителями, что обнаруживается по изменению спектров поглощения растворенного вещества. Свойства подобных растворов изучали Гильдебранд и Скотт [134]. В настоящее время имеется много данных об образовании комплексных соединений между йодом и органическими растворителями за счет разного рода кислотно-основных взаимодействий и взаимодействий на основе переноса заряда [58, 124, 162]. Определена теплота ком-плексообразования [121]. Существование подобных взаимодействий не меняет основного предположения о том, что константа распределения есть отношение растворимости в каждой фазе, поскольку влияние оказывается только на растворимость в органической фазе. Однако это означает, что константа распределения йода между водой и органическим растворителем до некоторой степени все же зависит от химической природы растворителя.  [c.14]

    Рассматриваются особенности стереохимии и устойчивости комплексных соединений, образуемых органическими реагентами. Много внимания уделено влиянию комплексообразования на окислительно-восстановительные потенциалы, а также кинетике и механизму реакций комплексообразования. Обсуждаются спектры поглощения комплексов и реагентов в видимой и ультрафиолетовой областях. Особенно подробно рассмотрены факторы, влияющие на растворимость соединений и их экстракцию органическими растворителями. [c.4]

    Опыты показывают удовлетворительное соответствие формулы (106) экспериментальным данным для большого числа органических соединений [52, 19]. Эта формула может быть использована для изучения влияния температуры на спектры поглощения и пригодна для различных агрегатных состояний растворителя. Она достаточно удовлетворительно описывает зависимость величины смещения Ave для полос различной природы (я->те, п- -л и др.). Заметные отклонения наблюдаются в том случае, если наряду с универсальными взаимодействиями в растворе проявляются специфические взаимодействия. Поэтому формула (106) может быть использована не только для оценки вклада [c.113]

    Появление широких полос поглош,ения, наблюдаемых у всех органических соединений и многих неорганических соединений в растворах, обусловлено взаимодействием с растворителем. Это уширение может оказывать очень существенное влияние на окраску. Так, например, вещество, спектр поглощения которого состоит из нескольких узких полос, в видимой области должно быть лишь слабо окрашено, даже если силы осцилляторов, соответствующих этим полосам, велики. Несмотря на то, что такое вещество будет [c.508]

    Экспериментально установлено, что значительный сольватохромный эффект характерен только для таких молекул с системой л-электронов, в которых распределение зарядов (а следовательно, и дипольный момент) в основном и возбужденном состояниях существенно различны. По этой причине растворители оказывают только относительно небольшое влияние на спектры поглощения в УФ- и видимом диапазонах многих органических веществ, в том числе ароматических соединений, лишенных электронодонорных и (или) электроноакцепторных заместителей, например бензола [21, 22], полиенов (например, ликопина [23], каротиноидов [24]), нолиинов (например, полиацетиленов [25]) и симметричных полиметиновых красителей [26—28, 292, 293], например изображенного ниже гептаме-тинового цианинового красителя (293]. [c.406]


    Заканчивая рассмотрение взаимосвязи люминесценции со структурой молекулы, уместно сделать некоторые замечания относительно влияния на люминесценцию природы растворителя. Этот вопрос не может быть оторван от рассмотренных выше структурных представлений. Если растворенное люминес-цирующее вещество представляет собой алифатический или ароматический углеводород, то влияние растворителя на спектры поглощения и люминесценции незначительно. В определенных пределах концентраций и величина выхода излучения практически остается без изменения. Иначе обстоит дело, когда молекула люминесцирующего вещества включает такие атомы, как кислород, азот, серу и др. Для большинства такого рода производных органических соединений отмечается способность к ионизации при растворении в полярных растворителях. Уже отмечалось, что многие вещества являются рН-иидикато-рами, если спектры иеионизоваиных и ионизованных молекул различны. Очевидно, что спектры люминесценции способных к ионизации веществ различны при исиользоваиии полярных и неполярных растворителей. [c.64]

    Учитывая учебный характер настоящей книги, в первых гла- I вах в конспективном виде изложены основные сведения о природе электромагнитного излучения, об электронных состояниях атомов и молекул и об основных закономерностях энергетичёс- ких переходов, определяющих возникновение спектров поглощения. На основе этих сведений рассмотрены электронные спектры поглощения основных классов органических соединений и влияние на эти спектры природы растворителей. [c.4]

    Выбор объектов исследования был ограничен следующими требованиями 1) наличием достаточно интенсивных и узких полос поглощения на участке инфракрасного спектра, доступнол фотографии 2) достаточно большой упругостью пара жидкого соединения, необходимой для получения заметного спектра поглощения при сравнительно коротком поглощающем слое (60 мм) и невысокой температуре (100° С) 3) пониженной прочностью валентных связей и повышенной реакционной способностью применяемого соединения, благоприятствующих наблюдению искажений молекулы при процессах взаимодействия. Совокупности этих требований наиболее полно удовлетворяют хлорпроизводные предельных и непредельных углеводородов хлороформ, хлористый этил, три-хлорэтилен, которые и были исследованы в парообразном состоянии под давлением На, N3, СО до 3000 кгс/см и при нагреве до 100° С. Из них СНС1з в особенности подходит для такого исследования, так как обладает исключительно тонкил1и полосами поглощения, сравнимыми с атомными линиями, а потому допускает обнаружение незначительных эффектов смещения и расширения. Были также проведены опыты по влиянию сверхвысокого давления на жидкий хлороформ, а также на растворы трихлорэтилена и бромэтилена в некоторых органических растворителях. Кроме того, исследовались спектры этилена, бензола и толуола под сверхвысоким давлением водорода. Выбор давящей газовой среды был но техническим условиям ограничен только указанными постоянными газами. Результаты для хлороформа приведены в виде диаграммы (рис. 3).  [c.12]

    В ультрафиолетовой области спектра сильно поглощают сами реагенты — а-бепзплдиок СИМ и р-нитрозо-а-нафтол, которые экстрагируются хлороформом вместе с комплексными соединениями никеля и кобальта. В литературе [1, 2] имеются указания па возможность реэкстракцип этих реагентов щелочами из хлороформного раствора. Нами были детально изучены условия экстракции и реэкстракции реагентов. Результаты представлены на рисунке. Двойная реэкстракция реагентов щелочью приводит к почти полному устранению их влияния на определение металлов в ультрафиолетовой области соединения никеля с а-бепзплдиок-симом и кобальта с Р-нитрозо-а-нафтол ом щелочью не реэкстра-гируются. Для устранения влияния на поглощение ничтожной доли реагента, остающегося в фазе органического растворителя, работа всегда проводилась с использованием нулевого раствора, содержащего все реагенты и прошедшего те же операции, что и исследуемые растворы, но не содержащие никеля п кобальта. [c.299]


Смотреть страницы где упоминается термин Влияние растворителя на спектры поглощения органических соединений: [c.32]    [c.54]    [c.189]    [c.72]   
Смотреть главы в:

Растворители в органической химии -> Влияние растворителя на спектры поглощения органических соединений




ПОИСК





Смотрите так же термины и статьи:

Поглощение растворителя

Поглощения спектры органических соединений

Растворители органические

Растворители органические влияние

Растворители спектры поглощения органических соединений

Спектры поглощения влияние растворителя

спектры как растворители

спектры соединения



© 2025 chem21.info Реклама на сайте