Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение физических методов для исследования высокомолекулярных соединений

    Как известно, разделение смеси молекул различной величины, близких по строению и составу, представляет весьма сложную задачу даже для низкомолекулярных продуктов, для которых относительная разница в физических свойствах между гомологами значительна. Для высокомолекулярных соединений разница в физических свойствах индивидуальных полимергомологов ничтожна и, кроме того, задача разделения их осложняется невозможностью применения обычных методов органической химии, как фракционная разгонка, кристаллизация и возгонка, Поэтому многими исследователями делаются попытки найти иные, специальные, методы разделения высокомолекулярных соединений, и количество теоретических и экспериментальных работ, посвященных вопросам фракционирования, все возрастает. Значительное усилие делается также в части развития методов, позволяющих установить функцию МВР аналитическими методами, без выделения узких фракций. Некоторые из аналитических методов (как, например исследование седиментации в ультрацентрифуге) позволяют выяснить истинную картину МВР с большой достоверностью, хотя метод этот еще в настоящее время не доступен для большинства лабораторий. Другие аналитические методы, как турбидиметрическое титрование, менее разработаны. [c.21]


    ПРИМЕНЕНИЕ ФИЗИЧЕСКИХ МЕТОДОВ ДЛЯ ИССЛЕДОВАНИЯ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ [c.161]

    Физические методы исследования приобретают все большее применение при изучении высокомолекулярных соединений. О таких методах, как определение удельного веса и коэффициента преломления, широко используемых для идентификации и определения чистоты полимеров, мы уже говорили ранее. Однако эти методы не могут быть использованы дJ[я более глубокого изучения полимеров и, в частности, для установления их строения. Эти задачи могут успешно решаться при помощи методов, использующих различные излучения. Такими методами являются, с одной стороны, спектроскопические методы, использующие излучения с различной длиной волны, начиная от инфракрасных лучей до ультрафиолетовых, и, с другой стороны, использование отражения от кристаллической решетки полимера рентгеновских, электронных и иных лучей. [c.161]

    Выяснение строения основных структурных элементов молекул высокомолекулярных углеводородов, смол и асфальтенов на основе применения широкого комплекса современных химических и физических методов исследования, а также путем синтеза модельных соединений, воспроизводящих отдельные элементы структуры этих молекул. [c.22]

    Дальнейшее развитие науки о высокомолекулярных соединениях происходило без острых разногласий. Установление основных принципов строения макромолекул, широкий промьппленный синтез и переработка синтетических и природных полимеров стимулировали бурное развитие пауки о полимерах. Сложность строения, особенности химических, физических, механических и других свойств полимеров потребовали применения новейших статистических, физических и разнообразных физико-химических методов для исследования полимеров. Поэтому уже в 40-х годах XX в. наука о высокомолекулярных соединениях сложилась как комплексная стыковая область, в которой успешно и плодотворно сотрудничали математики, физики, механики, химики, биологи и технологи. [c.8]

    Вопрос о возможности применения метода инфракрасной спектроскопии к исследованию столь сложных и мало изученных высокомолекулярных составляющих нефтей, какими являются смолы и асфальтены, заслуживает особого внимания. Конечно, пока нельзя рассчитывать на получение при помощи этого метода каких-либо количественных данных, характеризующих групповой состав смо-листо-асфальтеновой части нефти, или, тем более, на идентификацию индивидуальных соединений, входящих в состав этой, очень сложной, физически и химически неоднородной смеси веществ. Однако можно делать достаточно обоснованные и правильные заключения о характере структуры исследуемой фракции высокомолекулярных веществ нефтей, сопоставляя данные инфракрасной спектроскопии, полученные для большого числа различных фракций высокомолекулярных компонентов нефти, выделенных из нефти в результате применения разнообразных методов (хроматография, дробное осаждение, молекулярная перегонка и т. д.), и наблюдая изменения в спектрах поглощения в инфракрасной области от фракции к фракции, происходящие параллельно с изменением химического состава и свойств последних (элементарный и структурно-групповой состав, функциональные группы, молекулярно-поверхностные и электрические свойства а т. д.). Особенно полезной может оказаться инфракрасная спектроскопия для наблюдения за качественными изменениями фракций высокомолекулярных соединений в процессах их химических превращений — в реакциях окисления, гидрирования. В этом случае сравнение инфракрасных спектров фракций до и после реакции свидетельствует весьма наглядно и убедительно о направлении и глубине химических изменений. [c.477]


    Большое применение для разделения смесей высокомолекулярных органических соединений получил метод, основанный на избирательном растворяющем действии по отношению к компонентам смеси различных органических растворителей, таких, как бензол, фенол, тетралин, петролейный эфир, кетоны, спирты, пиридин, хлорированные углеводороды и многие другие. Сначала этот метод получил широкое применение при исследовании химической природы органического вещества бурых и каменных углей [93—103] с применением избирательно действующих растворителей. Но, так как исследования проводились в различных условиях (температура, давление, продолжительность взаимодействия и соотношение уголь растворитель) и исследовались угли различной химической природы, то накопилось большое число спорных вопросов и много противоречий в выводах, сделанных разными исследователями. Так, например, спорным и до сих пор не решенным остается один из важнейших вопросов — где проходит граница, разделяющая органические растворители на химически инертные, т. е. химически не взаимодействующие с извлекаемыми нз угля органическими веществами и химически активными растворителями, т. е. растворителями, которые в процессе извлечения из угля органического вещества действуют на него не только физически (растворение), но и химически (деполимеризация, окисление, восстановление, нейтрализация и другие реакции). [c.265]

    Высокая экспериментальная техника, применяемая в настоящее время при исследовании химического состава нефти, и разработка большого числа эффективных физических, физико-химических и химических методов разделения сложных многокомпонентных смесей органических соединений, в том числе и высокомолекулярных, позволяют осуществить довольно глубокое разделение их на компоненты. Для осуществления разделения высокомолекулярной части нефти с успехом используются такие эффективные методы, как молекулярная перегонка, изотермическая низкотемпературная перегонка, дробная кристаллизация с применением избирательно действующих растворителей и низких температур,термодиффузия, адсорбционная хроматография, методы получения кристаллических комплексов (пикраты, карбамиды, тиокарбамиды и др.). Удачный выбор груп- [c.215]

    Методы исследования высокомолекулярных соединений включают как чисто химическое исследование, так и применение физических методов. Среди последних очень важно определение молекулярного веса, которое было уже описано в главе L Здесь мы рассмотрим, не касаясь экспериментальных деталей, те принципы, на которых основано определение химического строения, т. е. качественный и количествен-дшй элементарный анализ, строение цепи макромолекулы, порядок сочетания основных звеньев и другие химические детали строения высокомолекулярных соединений, которые могут быть установлены при помощи химических методов. Далее будет изложено, какие физические методы и для каких целе11 могут быть использованы при исследовании высокомолекулярных соединений. Мы не будем здесь касаться тех выводов, которые были сделаны в отношении канедого соединения, исследованного при помощи этих методов, так как все эти детали в основном уже изложены в главах II и III и будут излон ены в третьей части при описании отдельных представителей высокомолекулярных соединений. Лишь в виде исключения для иллюстрации эффективности того или иного метода придется указывать на результаты, полученные при его помощи. [c.135]

    Для этого необходимо применение физических методов и прежде всего изучение вещества посредством спектральных методов инфракрасной, ультрафиолетовой спектроскопии, спектров комбинационного рассеяния, роитгепоструктурного анализа и т. п. Только на основе всей суммы сведений о веществе, которую может дать всестороннее химическое и физическое исследование с применением современных химических и физических методов исследования, можно составить себе достаточ1го полное представление о строении и свойствах данного соединения. Поэтому необходимо рассмотреть те методы, при помощи которых может быть произведено исследование высокомолекулярных соединений. [c.135]

    Многие методы исследования требуют дорогой аппаратуры, в основе их применения часто лежит сложная теория, что препятствует их широкому внедрению в учебные планы и программы. В основу данной книги положен курс лекций по дисциплине Методы исследования структуры и свойств полимеров , впервые введенной в учебный план подготовки инженеров-технологов специальности 250500 Химия и технология высокомолекулярных соединений на кафедре технологии синтетического каз чука Казанского государственного технологического университета. Целью преподавания данной дисциплины является ознакомление студентов с современным уровнем развития исследовательской техники и технологии, возможностями различных методов исследования. Вьтолнению этой задачи в немалой степени способствовало оснащение лабораторий необходимым набором современных приборов, высокий научный потенциал кафедры, работающей в тесном единении с Центром по разработке эластомеров и предприятиями отрасли. Авторы исходили из того, что основные понятия о химических, физических и физико-химических аналитических методах, технологии производства и переработки каучуков учащиеся приобрели в процессе изучения предыдущих дисциплин. [c.4]


    В связи с значительным расширением исследований, посвященных изучению состава смолистых веществ асфальтов, нефтей и тяжелых нефтепродуктов, увеличилось и число работ, направленных на выяснение химического строения этих высокомолекулярных гетероорганических соединений. К решению этой сложной задачи привлекаются как химические, так и физические методы. Довольно часто стали использовать для этой цели опектроскопические методы, особенно инфракрасную спектроскопию. Обширный опытный материал по изучению природы смолисто-асфальтеновых веществ нефтей и рассеянных битумов, на основе применения инфракрасной спектроскопии, собрала Е. А, Глебовская [231—234]. [c.391]

    Таким образом, теория строения белков как полипептидов, обоснованная Э. Фишером, стала прочным фундаментом исследования белков. Неясным оставалось, как при столь однообразном строении различных белков объяснить их весьма разнообразные физические и биохимические свойства. В 20-х годах XX века на примерах каучука, целлюлозы, крахмала были развиты представления о высокомолекулярных соединениях. В то же время были разработаны методы определения молекулярного веса высокомолекулярных соединений и, в частности, белков. Ранее о минимальном молекулярном весе протеидов судили по содержанию в них простетических групп (или каких-либо специфических атомов этих групп, например атома железа в гемоглобине), исходя из предположения, что одна простетическая группа содержится в одной молекуле протеида. Молекулярные веса и таким путем получились огромные, например для гемоглобина 68 000. Применение осмометри-ческого метода определения молекулярного веса (Серенсен, 1917 г.) и особенно разработка ультрацентри(1)угальпого метода (Сведберг, 1926 г.) позволили систематически исследовать молекулярные веса растворимых белков. Оказалось, что их молекулярные веса располагаются в широком интервале величин от 10 000 и ниже для ряда ферментов и гормонов (6500 для инсулина) до 6 600 000 (гемоцианин улитки) и даже до 320 000 000 (белок вируса гриппа). Если принять средний молекулярный вес аминокислотного остатка, входящего в полипептидную цепь белка, равным 115, то окажется, что число аминокислотных остатков в молекулах белков колеблется от нескольких десятков до немногих миллионов. Таким образом, уже по молекулярным весам белки представляют величайшее разнообразие. Простейшие из них вряд ли могут быть отнесены к высокомолекулярным соединениям, между тем как некоторые представляются одними из высокомолекулярных соединений с наиболее громоздкими молекулами. Существеннейшим отличием белков как высокомолекулярных соединений от таких синтетических полимеров, как капрон, полистирол, и таких природных высокомолекулярных соединений, как каучук, целлюлоза, крахмал, является разнообразие элементарных звеньев ( мономеров ), из которых построены белки. Взамен одного мономера (например, остатка ю-аминокапроно-вой кислоты или глюкозы, стирола, изопрена) в белки входит более 20 разных аминокислотных остатков. Это было и вдохновляющим и обескураживающим обстоятельством. Если молекула состоит всего из 20 разных аминокислотных остатков, для нее возможно [c.655]

    В монография изложены результаты исследования химигческого состава углеводородных и гетероатомных компонентов нефтей Западной Сибири с применением современных средств физического и физи-ко-химического анализа, включающих инструментальные методы, такие как УФ-, ИК-, ПМР-, ЭПР-спектроскопию, масс-спектрометрию, газовую и жидкостную хроматографию. Большое внимание уделено новым методическим подходам, используемым для выделения, разделения и структурно-группового анализа высокомолекулярных углеводородных и гетероатомных соединений, разработанным в Институте химии нефти Сибирского отделения АН СССР. [c.2]

    В силу тех же причин при исследовании химической природы и свойств высокомолекулярной части нефти, так же как и при исследовании всех высокомолекулярных органических соединений вообще, широкое применение получили физические и физико-химггаеские методы. [c.5]


Смотреть страницы где упоминается термин Применение физических методов для исследования высокомолекулярных соединений: [c.477]    [c.216]    [c.233]    [c.121]    [c.17]    [c.4]    [c.388]   
Смотреть главы в:

Химия высокомолекулярных соединений -> Применение физических методов для исследования высокомолекулярных соединений




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения

Высокомолекулярные соединения физические методы исследования

Методы физические

Физическое исследование



© 2025 chem21.info Реклама на сайте