Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные свойства простых волн

    Основные свойства простых волн. Простая волна, в которой Da = О, будет называться вырожденной, а простая волна, в которой Da ф О, будет называться невырожденной простой волной. [c.118]

    Другая характерная особенность фотохимических реакций — возможность точно и просто регулировать степень возбуждения реагирующих молекул, изменяя длину волны монохроматического излучения (при условии соблюдения первого закона фотохимии). Молекулы, находящиеся в электронно-возбужденном состоянии, существенно отличаются по своим свойствам (конфигурация, дп-польный момент, кислотно-основные свойства и т. п.) от молекул,, находящихся в основном состоянии, и реакции между ними могут идти совершенно иным путем. В связи с этим продукты, получающиеся в фотохимических и темновых процессах, могут существенно различаться даже при равенстве энергий, сообщаемых молекуле в фотохимической и темновой реакциях. [c.134]


    В работе [70] проведено более детальное рассмотрение структуры спиральной волны, значительно улучшающее выводы простого геометрического анализа. Основная идея, использованная в этой работе, состояла в переходе к новым координатам, в которых фронт спиральной волны оказывается выпрямленным и задача сводится к циркуляции импульсов по системе окружностей в некоторой эффективной среде, свойства которой зависят от удаления от центра спирали. [c.178]

    Хотя, в отличие от электродов, оптические сенсоры не требуют отдельного сенсора сравнения, их эксплуатационные характеристики все же существенно улучшаются, если аналитический сигнал сравнивать с некоторым опорным сигналом. Для этого существует несколько способов. Самый простой из них заключается в прямом измерении интенсивности источника на аналитической длине волны, чтобы компенсировать флуктуации его собственной интенсивности. Более привлекательный подход состоит в использовании сигнала сравнения - интенсивности света, проходящего через иммобилизованный реагент. Это позволяет компенсировать любые изменения в оптических свойствах фазы реагента (например, изменения в рассеянии света в фазе реагента из-за изменения показателя преломления исследуемого образца во времени). В флуоресцентном кислородном сенсоре сигналом сравнения может служить обратное рассеяние возбуждающего света [18]. Другой способ получения сигнала сравнения-это введение в фазу реагента какого-либо флуоресцирующего агента, нечувствительного к определяемому веществу. Там, где это возможно, наилучшим подходом является получение сигнала сравнения от самого иммобилизованного реагента. Например, в рН-сенсоре на основе индикатора, кислая и основная формы которого флуоресцируют при разных длинах волн, можно измерять отношение интенсивности флуоресценции этих двух форм [35]. Такой сигнал сравнения компенсирует не только приборные флуктуации и колебания оптических свойств реагентной фазы, но и изменения количества иммобилизованного индикатора вследствие медленного разложения или некоторых других процессов. [c.476]

    Существование простой волны связано с гиперболическим характером уравнений, описывающих этот класс течений. Напомним, что классическим гиперболическим уравнением является волновое уравнение. Дадим определение простой волны. Если одно из семейств характеристик является прямыми линиями с постоянными параметрами па них, то течение в этой области называется простой волной. Основным свойством простой волны является следующее к области движения с постоянными параметрами может примыкать только либо еще одна область движения с постоянными параметрами, либо простая волна. Нри этом оказывается, что для существования простой волны необходимо, чтобы одна из характеристик какого-либо семейства была прямолинейной с постоянными параметрами на ней. Указанные свойства простой волны нетрудно получить, рассмотрев в случае изоэнтропического течения уравнения совместности на характерпстиках. Действительно, вдоль С+- и С--характеристик постоянны инварианты Римана /+, I- (формула [c.53]


    Прежде чем описывать, как работает говорят,ая машина, следует дать определение или описание этого типа машины. По-видимому, рамы.м основным свойством говорящих (т. е. издающих звуки речи) машин является то, что им должно быть указано, что именно они должны говорить, Другими словами, в них должна быть введена некоторая управляющая информация. Такого рода управление, на первый взгляд, представляется труднодостижимым, однако оно существует даже в столь обычном говорящем устройстве, как радиоприемник. Им является акустическая модуляция несущей радиоволны звуковыми колебаниями, поступающими из радиостудии. Впрочем, называть радиоприемник говорящей машиной вряд ли приемлемо. Радио-приелшик высшего класса H -Fl должен воспроизводить тонкие детали формы звуковой волны и для этого требуется обширная входная управляющая информация. Обычной общепринятой единицей количества ипформации является, как известно, бит (двоичный разряд), равный количеству информации, которая необходима для того, чтобы ответить на один вопрос типа да или нет . Если колебания, образующие речь, кодировать в виде последовательности двоичных чисел, как, например, это делается в некоторых современных телефонных системах, с помощью импульсио-кодовой модуляции , то при этом оказывается нетрудно подсчитать, что скорость передачи информации составляет около 20 ООО бит сек даже при посредственном качестве передачи, и по крайней мере 100 ООО бит сек при передаче высшего качества -Р ). Благодаря тому, что радио-приемиик просто воспроизводит исходные звуковые волны, он столь же хорошо, как и речь, может воспроизводить и любые другие звуки, например музыку. [c.87]

    Посмотрим, каковы свойства внутренних волн, вытекаюп ие из основных уравнений гидродинамики. Прежде всего без вывода запишем формулу, которая связывает скорость внутренних волн со скоростью с поверхностных волн, если море чрезвычайно глубокое и толш ина верхнего слоя воды с плотностью 62 тоже весьма велика. В этом (простейшем) случае оказывается, что [c.222]

    Основные представления геометрической оптики являются общими для электромагнитных и гравитационных полей [34]. Геометрическая (лучевая) оптика представляет собой простой приближенный метод построения изображений в оптических системах [1]. Фронт электромагнитной волны в четырехмерном пространстве определяется характеристической гиперповерхностью уравнений Максвелла вследствие теоремы Лихнеровича, он совпадает с фронтом гравитационной волны. Траектории распределения электромагнитной волны - электромагнитные лучи можно определить как бихарактеристики уравнений Максвелла они совпадают с гравитационными лучами [34]. На основании вышеизложенного рассмотрим преломление, отражение, рассеяние и поглощение силовых линий гравитационного поля, используя эти же свойства лучей электромагнитного поля. [c.81]

    Природу, структуру и электронное состояние промежуточного продукта. Для абсорбционной спектроскопии можно использовать источник белого света в сочетании со спектрографом для получения фотографически зарегистрированного обзорного спектра поглощающих соединений в реакционной системе. В других случаях для сканирования спектрального диапазона может применяться монохроматор с фотоэлектрическим приемником. Многие исследуемые короткоживущие интермедиаты обладают достаточно большим оптическим поглощением из-за наличия разрешенного электронного дипольного перехода на более высокий уровень энергии, В этом случае, например, триплетные возбужденные состояния могут наблюдаться по их триплет-триплетному поглощению. В общем случае индивидуальные полосы поглощения имеют тем большую амплитуду, чем они уже. Вследствие этого эффекта атомы имеют разрешенные линии поглощения с особенно большими амплитудами. При количественных измерениях поглощения обычно выбирается длина волны, при которой наблюдается сильная полоса поглощения и на нее не накладываются полосы поглощения других соединений, В экспериментах по оптическому поглощению в качестве источника света можно применять лазеры. Очень эффективны в лазерных абсорбционных исследованиях перестраиваемые лазеры на красителях, особенно для веществ с узкими полосами поглощения (таких, как атомы и малые радикалы), поскольку лазерное излучение отличается высокой монохроматичностью и узкой спектральной полосой. Повышения поглощения можно достигнуть, заставив световой пучок многократно пересекать образец с помощью соответствующего расположения зеркал в многопроходовом абсорбционном эксперименте. Вновь для этой цели превосходно подходят лазеры благодаря малой расходимости лазерного пучка. В ряде случаев можно создать источник света, который спектрально адекватен абсорбционным свойствам именно исследуемых соединений. Например, можно сконструировать электрические разрядные лампы, содержащие подходящие газы и испускающие резонансные спектральные линии (при переходе из первого возбужденного состояния в основное) многих атомов и простых свободных радикалов. Очевидно, что резонансные спектральные линии точно соответствуют длинам волн поглощения этих же веществ, соответствующим переходу из основного электронного состояния. Если эти атомы или простые радикалы присутствуют в реакционной смеси, то будет наблюдаться резонансное поглощение. Если спектральные ширины полосы испускания источника и полосы поглощения объекта исследования совпадают, то чувствительность абсорбционных измерений может быть высокой при различающейся избирательности, так [c.195]


    Основное значение для получения воспроизводимых результатов по току и для получения четкой волны имеют способы обработки электродов. Были испытаны несколько способов хи-мической и электрохимической активации поверхности платиновых электродов. Наиболее простой из них заключается в следующем. Электрод обрабатывают горячей царской водкой в течение 2—3 мин. и промывают дистиллированной водой. Затем электрод погружают в раствор 1 N Н2304 и прикладывают анодное напряжение 1,2—1,5 в в течение 20 мин. После этого трижды изменяют напряжение от -+-1 в до 0. Подготовленный таким образом электрод сохраняет свои свойства в течение 12 час. [c.242]

    Благодаря большой чувствительности УЗ-волн к изменению свойств среды с их помощью регистрируют дефекты, не выявляемые другими методами. Возможны различные варианты УЗ-методов, осуществляемые в режиме бегущих и стоячих волн, свободных и резонансных колебаний, а также в режиме пассивной регистрации упругих колебаний, возникающих при механических, тепловых, химических, радиационных и других воздействиях на объект контроля. При обработке информахщи могут быть определены различные характеристики УЗ-сигналов - частота, время, амплитуда, фаза, спектральный состав, плотности вероятностей распределения указанных характеристик. Наконец, простота схемной реализации основных функциональных узлов позволяет соз -дать простые и легко переносимые приборы для УЗ-контроля, имеющие автономные источники питания, рассчитанные на многие месяцы работы в полевых условиях. Отмеченные достоинства УЗ-метода в полной мере реализуются при проектировании и эксплуатации УЗ-приборов и систем НК только при правильном и достаточно глубоком понимании физических основ УЗ-конт-роля. Даже при автоматизированном УЗ-контроле остается значительной роль человеческого фактора в определении оптимальных условий контроля, интерпретации его результатов и обратном влиянии контроля на технологический процесс. Не менее важным является и дальнейшее развитие УЗ-метода с целью улучшения основных показателей его качества - чувствительности и достоверности - применительно к конкретным задачам технологического и эксплуатационного контроля. [c.138]

    Подобная картина свойств необходима в широком диапазоне изменений как температуры, так и частоты и к тому же для более чем одной моды деформации, поскольку интенсивность и положения переходов зависят от вида напряжения. На практике применяется растяжение (включая изгиб), сдвиг (включая кручение) и трехосное деформирование. Тем не менее, более естественно подразделение на типы колебаний, а не на виды напря-жения, потому, что виды деформации обусловливают диапазон частот в отличие от методов ступенчатого возбуждения (см. главу 5), которые не имеют подобных резко отличающихся временных интервалов. Основная классификация испытаний включает свободные колебания, вынужденные колебания (резонансные или нерезонансные) и волновое распространение, приближенно перекрывая соответственно следующие диапазоны частот 0,01— 10 Гц 10—5-10 Гц и 5-10 —16 Гц. Аналогичное подразделение имеется в экспериментах по диэлектрической проницаемости. Мостовая техника, соответствующая вынужденным методам механических колебаний, используется на частотах 10—16 Гц. Начиная с 10 Гц, применяются резонансные радиочастотные схемы. Выше 10 Гц начинает доминировать индуктивность, и методы ламповых схем приходится заменять методами распределенных цепей, опирающимися на волновое распространение через диэлектрическую среду. Это соответствует распространению колебаний на ультразвуковых частотах в вязкоупругой среде, причем связанных с теми же самыми экспериментальными трудностями потерь энергии на границах раздела сред, отражением волн, эффектом согласования генератора с образцом и т. п. Как правило, амплитуда возбуждения уменьшается с ростом частоты из-за ограничения энергетических возможностей аппаратуры, но даже на самых низких частотах большинство типичных экспериментов проводится в области линейности. Этим объясняется, почему анализ относительно прост. Значительно более важно то, что функция динамического отклика не определяется через интеграл свертки, так что уникальные среди вязкоупругих функций комплексные модуль и податливость могут быть непосредственно подставлены в качестве упругого модуля или упругой податливости в любые формулы зависимости напряжения от деформации, и для вязкоупругих материалов могут быть выбраны известные решения упругих колебательных систем. Это свойство будет использовано в следующих разделах. [c.61]

    Как было указано выше, электронные спектры молекул проявляются в видимой и ультрафиолетовой областях спектра. Их возникновение связано с волбуждением внешних валентных электронов, которые в основном определяют химические свойства вещества. У молекул, содержащих только простые связи, электронный спектр поглощения находится в области длин волн короче 1600 А простейшие молекулы, имеющие кратные (двойные или тройные) связи, поглощают в области спектра ниже 2400А, а те молекулы, которые содержат атомы с не-поделенными парами электронов (Ы, О, 5, галоиды и др.),—в области-длин волн короче 3500А. В веществах сложного состава, содержащих чередование простых и кратных связей или сопряжение с атомом, имеющим неподеленную пару электронов, поглощение смещается в более длинноволновую область спектра. Эти факты приводят к заключению, что электронный спектр поглощения определяется тремя структурными группами молекул простой связью, кратной связью и группами атомов, среди которых имеется атом с неподеленной парой электронов. [c.350]

    Примеси могут оказывать значительное влияние на физические свойства соединений. Наиболее просто дело обстоит в том случае, когда атомы примеси имеют одинаковую валентность с замещаемыми атомами и образуют с одним из компонентов основного кристалла соединение той же формулы и кристаллической структуры, что и соединение, в которое примесь включается. В подобных случаях твердый раствор представляет собой нормальный смешанный кристалл, как, например, (Na, К)С1 (А1, Сг)гОз (Zn, d)S (Mg, Ni)0 (Zn, Mn)2Si04 и T. Д. При этом большинство физических свойств кристаллов монотонно меняется с составом. Например, плотность и параметры элементарных ячеек изменяются линейно между крайними значениями, соответствующими чистым компонентам. При рассмотрении оптических свойств, таких, как поглощение или люминесценция, следует различать общие эффекты, связанные с зонной структурой кристалла, и характеристические эффекты, типичные для отдельных ионов. В простейшем случае ширина запрещенной зоны и в соответствии с этим длина волны основного поглощения и люминесценции изменяются с составом также линейно. Примерами могут служить (Zn, d)S [11 (Hg, d)Te [2], Pb(S, Se, Те) [3]. В некоторых системах в зависимости от состава изменяется структура зоны проводимости или валентной зоны (или же обеих зон одновременно). Тогда наблюдаются линейные изменения основных оптических свойств внутри области, в которой сохраняется зонная структура каждого компонента системы, с более или менее резким перегибом в области составов, где уровни одной структуры становятся более стабильными, чем другой. Таким образом, например, изменяются зонные структуры в системах Ge, Si [41 В1г(Те, Se)a [5] Zn(S, Те) и Zn(Se, Те) [61. Однако изменения длин волн, обусловленных характеристическими оптическими эффектами, связанными с внутриионными переходами, при образовании смешанных кристаллов, как правило, незначительны или вообще не наблюдаются интенсивность же спектральных полос с одинаковой длиной волны изменяется с концентрацией линейно. [c.422]


Смотреть страницы где упоминается термин Основные свойства простых волн: [c.118]    [c.59]    [c.133]    [c.29]    [c.133]    [c.85]    [c.13]   
Смотреть главы в:

Лекции по основам газовой динамики -> Основные свойства простых волн




ПОИСК





Смотрите так же термины и статьи:

Простые основные свойства



© 2025 chem21.info Реклама на сайте