Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дифференцировка и рост растений

    Координированные процессы клеточного деления, роста и дифференцировки контролируются многими факторами. Среди них особенно выделяется группа сигнальных молекул, называемых фитогормонами (или регуляторами роста растений), которые специфически действуют на рост растений и играют ключевую роль в их развитии Известно пять классов таких соединений ауксины, гиббереллины, цитокинины, абсцизовая кислота и газ этилен. Как показано на рис. 20-67, все это небольшие молекулы, способные легко проходить через клеточную стенку. Эти вещества вырабатываются в растительных клетках и либо действуют на месте, либо транспортируются по определенным путям к клеткам-мишеням. Так, например, суммарный поток ауксинов в побегах направлен от верхушки к основанию (скорость его около 1 см/ч). Несмотря на относительно малое число гормонов, растения справляются со своими регуляторными задачами благодаря многообразному использованию каждого гормона их клетки, как правило, реагируют на определенные комбинации этих веществ. Так, сам по себе ауксин способствует образованию корней, в сочетании с гиббереллином вызывает удлинение стебля, вместе с цитокинином контролирует рост боковых почек, а с этиленом стимулирует рост боковых корней. [c.436]


    Дифференцировка и рост растений [c.344]

    Минеральное питание. На росте растений благоприятно сказывается высокое содержание в почве минеральных элементов, особенно азота. Однако способствующие быстрому росту высокие концентрации азота задерживают процессы дифференцировки, в частности закладку цветков. Высокий минеральный фон приводит к разрастанию вегетативных органов и необходим при наращивании зеленой массы кормовых растений. Но чрезмерное удобрение снижает урожай плодов и зерна. Поэтому по методу В. А. Чеснокова в гидропонной культуре лучший урожай огурцов, моркови, клубней картофеля получается при одноразовом или периодическом голодании растений, особенно по азоту. [c.366]

    Уоринг Ф., Филлипс И. Рост растений и дифференцировка. [c.457]

    Рост растений и дифференцировка Пер. с аигл. — М. Мир, [c.4]

    Каллусная клетка имеет свой цикл развития, аналогичный циклу всех других клеток деление, растяжение, дифференцировку, старение и отмирание. Дифференцировку каллусных клеток принято называть вторичной. Однако ее не следует путать с вторичной дифференцировкой, на которой основан морфогенез. Рост каллусных тканей подчиняется общим закономерностям. Кривая роста каллусных тканей также имеет характер -образной кривой (ростовая кривая Сакса) и включает пять фаз, длительность которых неодинакова у разных видов растений (рис. 6.4). [c.169]

    Каждая клетка после деления попадает в свою окружающую среду , которая характеризуется определенной специфичностью. Эта специфичность может быть связана (прямым или косвенным способом) с концентрацией воды в системе, с природой и количеством углекислого газа, кислорода, других компонентов атмосферы, с наличием биоактивных молекул-гормонов, других метаболитов, а также с рядом дрз их факторов. Последними являются температура, интенсивность и спектр проникающей радиации, значения электромагнитных градиентов и т. д. Полагают, что упомянутые факторы могут влиять на дифференцировку через цитоплазму, которая в свою очередь воздействует на гены. Разумно допустить, что различие упомянутых факторов связано с различным положением клеток в развивающейся живой гетерогенной системе. Здесь уместно провести простую аналогию между положением клетки в развивающейся ткани эмбриона и ростом листа растения (например, дерева). Растущий лист ориентируется в пространстве в соответствии с максимальной интенсивностью потока солнечной энергии. Количество солнечной энергии, аккумулируемой листом, зависит как от прямого доступа солнечного света, так и потока рассеянного света, определяемого пространственным расположением листа среди его соседей (других листьев). Эти другие листья играют роль компонентов внутренней окружающей среды рассматриваемого листа. Они являются своего рода окружающими клетками . Очевидно, что представленная аналогия позволяет [c.23]


    Различные органы растения образуются в результате сложного процесса, в котором реализуется генетическая программа деления клеток, их селективного роста и, наконец, дифференцировки. Поскольку растительные клетки имеют ригидную клеточную стенку и не могут передвигаться, в области морфогенеза растений особый интерес приобретают два вопроса 1) чем детерминируется строгая последовательность клеточных делений, происходящих в определенных плоскостях и 2) каким образом регулируются степень н направление роста отдельных клеток Как мы увидим, за то и другое по крайней мере частично ответственны особые ансамбли микротрубочек, имеющиеся только в растительных клетках. Третий аспект развития-клеточная дифференцировка-регулируется гормонами и факторами внешней среды. В этом разделе мы рассмотрим в общих чертах то, что сейчас известно о делении, росте и диффереицировке растительных клеток. [c.197]

    Регуляция экспрессии генов. Фитогормональная регуляция экспрессии генов обусловливает такие важнейшие процессы в жизни растительной клети, как дифференцировка и дедифференцировка, деление, рост и адаптация к новым метаболическим условиям. Среднее время фитогормональной регуляции работы генома исчисляется несколькими часами. В то же время растение способно ответить на изменение уровня некоторых гормонов всего за несколько десятков минут. Эти быстрые реакции связаны со способностью фитогормонов регулировать активность уже существующих ферментов растительной клетки. [c.335]

    В формировании видового разнообразия высших растений участвует относительно небольшое число специализированных типов клеток, при образовании которых (например, сосудистых элементов двух проводящих тканей-ксилемы и флоэмы) клеточная стенка подвергается значительным изменениям Определенные участки клеточной стенки могут быть укреплены. Часто это происходит путем добавления одного или более слоев, образующих вторичную клеточную стенку. Другие участки клеточной стенки могут избирательно удаляться, как это происходит с торцевыми стенками при образовании проводящей трубки сосуда из длинного ряда цилиндрических клеток. Эти изменения клеточной стенки контролируются временными и пространственными изменениями в цитоплазме развивающихся клеток Клеточная стенка представляет собой динамическую структуру, состав и форма которой могут подвергаться заметным изменениям не только в процессе роста и дифференцировки клеток, но и после их созревания. [c.398]

    Несмотря на поразительное разнообразие цветковых растений, некоторые особенности их формы и развития остаются удивительно постоянными. Наличие клеточной стенки заставляет растение выбирать иные, чем у животных, стратегии размножения, роста и развития В данном разделе будут рассмотрены некоторые общие закономерности и обсуждены их клеточные основы. Особенности размножения растений суммированы на схеме 20-2. Вначале мы рассмотрим оплодотворенную зиготу и некоторые процессы в ее раннем развитии. Растения, подобно животным, при дифференцировке клеток широко используют пространственную регуляцию. Однако вместо миграции и перегруппировки клеток, играющих такую важную роль в развитии эмбрионов животных (см. гл. 16), у растений в морфогенезе решающим остается координированное деление клеток и их жестко регулируемый рост. Эти процессы находятся под контролем внешних факторов, таких как свет, гравитация, наличие питательных веществ, и внутренних, таких как фитогормоны. Благодаря открытию факторов роста появилась возможность выращивать клетки и ткани растений в культуре и использовать эти культуры для разнообразных генетических манипуляций [c.426]

    До сих пор обсуждение развития высших растений велось главным образом на уровне описания тканей и органов. Какие же изменения, происходящие на клеточном уровне, лежат в основе всех этих процессов Поскольку клетки растений лишены подвижности из-за наличия клеточных стенок, морфогенез растений должен зависеть от регулируемого деления клеток, сопряженного с ростом клеток в строго определенном направлении. Папример, большинство клеток, образуемых апикальной меристемой корня, проходит три основные фазы развития деление, рост (растяжение) и дифференцировку. Эти фи стадии, во времени и в пространстве накладывающиеся друг на друга, определяют характерное строение кончика корня. Хотя дифференцировка клетки часто начинается, когда она еще увеличивается в размерах, в кончике корня относительно несложно отличить зону деления клеток, зону их растяжения (в результате чего происходит рост корня в длину) и зону дифференцировки (рис. 20-61). После завершения дифференцировки некоторые из дифференцированных типов клеток остаются живыми (например, клетки флоэмы), а другие погибают (например, клетки ксилемы) [c.430]

    Морфогенез растений зависит от координированного деления, растяжения и дифференцировки неподвижных клеток Контроль за расположением плоскостей деления клеток и за их растяжением в определенном направлении частично осуществляется микротрубочками, связанными с внутренней поверхностью плазматической мембраны. На рост и деление клеток растений оказывают влияние свет, сила тяжести, температура и другие факторы окружающей среды, а также такие специфические низко молекулярные регуляторы роста, как ауксины и цитокинины. [c.440]


    Экзогенный этилен в низких концентрациях существенно влияет на функцию и обмен растений, вызывая ряд эффектов.. Фрукты, обработанные этиленом, раньше созревают. Эндогенно синтезируемый этилен действует также на рост и дифференцировку растений, на их реакции на среду. Скорость образования этилена наиболее высока в активно растущих тканях меристемы. [c.93]

    Таким образом, в процессе регуляции роста растений каждый из фитогормонов проявляет специфические свойства. Ауксин, например, усиливает дифференцировку стебля растущего побега и подавляет рост боковых почек. Гиббереллин вызывает растяжение междоузлий стебля, индуцирует стрелкование розеточных растений, изменяет форму листьев. Кинетин, задерживая старение листьев, обладает мобилизующим действием на транспорт питательных и гормональных веществ, а также, будучи нанесенным на растение, индуцирует рост боковых почек (Dostal, 1971). [c.96]

    Фиторегуляторы занимают особое место в арсенале средств биотехнологии растений, поскольку являются главными инструментами, позволяющими управлять процессами каллусообразования, дифференцировки, роста и развития растений-регенерантов. [c.348]

    Выращивали суспензию зрелых дифферепцироваппых клеток корней, стеблей или листьев моркови и табака. Затем по одпой клетке переносили в свежую жидкую среду. Возникали клоны из клеток табака — аморфные каллусоподобные массы клеток, из клеток моркови — небольшие сердцевидные скопления, очень похожие на нормальные зародыши моркови. Затем эти клоны переносили па твердый субстрат — почву или агар, обогащенный минеральными веществами и гормонами роста растений, и выращивали. В копце концов из них развивались нормальные растения с корнями, стеблями, листьями и даже цветами и семенами (рис. 13-3). Следовательно, в ходе дифференцировки клеток, послуживших родопачальниками клонов, весь геном сохранялся. [c.231]

    В ходе онтогенеза растительные организмы проходят ряд этапов эмбриональный, ювенильный, зрелости и размножения, старости и отмирания. Каждый из этих этапов в свою очередь включает в себя несколько последовательных фаз роста и развития. Закладка органов происходит в апикальных меристемах, формирование тканей начинается с образования инициальных клеток. Особенности роста и морфогенеза обусловлены локальной скоростью и длительностью деления и растяжения клеток, а также векторностью этих процессов, которая определяется поляризацией клеток. Характер деления, растяжения и дифференцировки клеток зависит от взаимодействия клеток и от их местоположения. Высокая способность растений к регенерации определяется их прикрепленным образом жизни. Регенерация осуществляется на основе тех же механизмов, что и процессы морфогенеза при нормальном развитии. Рост растений отличается периодичностью. В неблагоприятные периоды растения переходят в состояние вынужденного или глубокого (физиологического) покоя. [c.369]

    В основе организации всего научного материала лежит предоставление авторов о росте растения как о Сложном процессе, связанном с увеличением размеров (ростом) клеток, тканей и оргайов, а также с их дифференцировкой. Авторы рассматривают рост как необратимые количественные изменения в клетках тканей и органов, тогда как диффереицировку — как качественные изменения, наблюдаемые в процессе развития. [c.5]

    Участок Ti-плазмиды, встречающийся в хромосомах раститель-ньге клеток, называется Т-областью в бактерии и Т-ДНК в клетках растений. Т-область включает примерно 10% Ti-плазмиды и содержит гены, отвечающие за индукцию опухоли, синтез опинов и подавление дифференцировки (гормоннезависимый рост клеток). Важно отметить, что все гены, ответственные за перенос и интеграцию генов Т-области, находятся не в ней самой, а рядом — в области вирулентности — vir-области (рис. 5.17). [c.146]

    Обоснованно принято считать, что большинство многоклеточных растений и животных начинает жизненный цикл с одной клетки - зиготы (оплодотворенного яйца). В результате многократных митотических делений из этой клетки возникает сложный, высокодифференцируемый организм. Этот процесс называют ростом и развитием. При этом упомянутый процесс включает дифференци-ровку. В результате дифференцировки клетка приобретает определенную структуру и, размножаясь, производит себе подобные. Так, в многоклеточном организме возникают различные ткани (органы) и происходит формирование сложного организма. Как полагают, причина этого явления не ясна [30]. Однако рост и развитие, несомненно, связаны с индукцией и репрессией генов. Считают, что дифференцировка проявляется через сложные взаимодействия между ядром, цитоплазмой и окружающей средой клетки. В литературе обсуждены различные этапы механизма дифференцировки. Их, естественно, весьма много [30, 31]. [c.22]

    Координированные процессы клеточного деления, роста и дифференцировки, лежащие в основе развития растительного организма, контролируются как внешними, так и внутренними факторами. К внешним факторам относятся, например, гравитация, температура, продолжительность и интенсивность освещения. Механизмы воздействия этих факторов на процессы развития очень сложны, и мы не будем их здесь касаться. Внутренние факторы, участвующие в регуляции роста и развития растений,-это так называемые фатогормоны. [c.202]

    В литературе приведены многочисленные указания на то, что бор необходим для роста, созревания, днфференцировки и деления клеток. По данным Дж. Скока , применявшего при изучении этого вопроса облучение растений лучами Рентгена, действие бора связано не с делением клеток, а главным образом с их созреванием и дифференцировкой. Однако экспериментальных данных, освещающих вопрос о роли бора в связи с развитием клетки, получено еще чрезвычайно мало, и они недостаточны для обоснования четких выводов и обобщений по рассматриваемому вопросу. Необходимы дальнейшие исследования в этом направлении. [c.35]

    Химическая (гуморальная) координация у животных осуществляется с помощью гормонов, т. е. веществ, которые синтезируются в одном месте, а действуют, причем в очень малых концентрациях, в других местах. У растений координация функций осуществляется с помощью соединений, которые вовсе не обязательно транспортируются куда-то из места, где они синтезируются, поэтому их не всегда можно назвать гормонами. Кроме того, поскольку эти химические агенты обычно в той или иной мере влияют на рост, их рекомендуется называть ростовыми веществами. Впрочем, эта терминологическая тонкость многими авторами не соблюдается, и широко применяются такие понятия, как гормоны растений , или фитогормоны , которыми мы тоже будем пользоваться. Важно только осознавать, что точные механизмы действия ростовых веществ растений пока неясны и аналогия с действием гормонов животных может только ввести в заблуждение. Следует помнить, что процесс роста складывается из трех этапов — деления клеток, увеличения их размеров и дифференцировки (специализации), и что этот процесс протекает не во всех частях растения (разд. 22.4). Это, следовательно, будет отражаться на действии и распределении различных ростовых веществ в растении. Выделяют пять основных классов ростовьгх веществ  [c.247]

    Значение внешних сигналов для роста и ориентации органов растения мы уже обсуждали при рассмотрении тропизмов. Самый мощный из таких сигналов — свет. Он не только дает энергию для фотосинтеза и определяет движение органов растения, но и непосредственно воздействует на процессы дифференцировки. Изменение ее хода под влиянием света определенного спектрального состава, интенсивности и периодичности называется фотоморфогепезом. [c.272]

    Существует несколько путей, по которым может идти развитие клетки после ее дедифференцировки. Первый путь — это вторичная регенерация целого растения, возможна дифференцировка на уровне клеток, тканей, органов. Второй путь — это утрата клеткой способности к вторичной дифференцировке и регенерации растения, стойкая дедифференцировка, приобретение способности расти на среде без гормонов, т. е. превращение в опухолевую. Такими свойствами часто характеризуются клетки старых пересадочных культур. Третий путь — это нормальный цикл развития каллусной оетки, заканчивающийся ее старением и отмиранием. В этом случае клетка претерпевает вторичную дифференцировку и прекращает делиться (стационарная фаза роста). Однако такая дифференцировка не ведет к морфогенезу, а закрепляет за ней свойства старой каллусной клетки. [c.96]

    Вторичная дифференцировка каллусных клеток не всегда заканчивается морфогенезом и регенерацией растения. Иногда она приводит только к образованию тканей (гистодифференцировка). Таким путем каллусная клетка может превращаться во флоэмные или ксилемные элементы. Другим примером вторичной дифференцировки может служить превращение дедифференцированной активно пролиферирующей клетки в старую неделящуюся каллусную клетку (стационарная фаза роста). [c.98]

    Получение стабильно устойчивых линий — процесс длительный. Как правило, селекция начинается с получения достаточного количества каллусной массы из изолированных растительных эксплантов, использующейся в дальнейшем для определения концентрации селективного фактора (построение дозовой кривой), при которой наблюдается одновременно рост каллусной ткани, и в то же время часть каллусных колоний погибает. Выбранная концентрация селективного фактора признается оптимальной и используется в дальнейших экспериментах. Так как первично полученные на средах с селективными факторами колонии клеток могли возникнуть вследствие физиологической адаптации или определенного состояния дифференцировки клеток и не быть генетически устойчивыми, то в течение последующих А—6 субкультивирований на селективной среде проверяется стабильность устойчивости полученных клонов. Затем их переносят на среду без селективного фактора и субкультивируют еще 2—3 пассажа. И только после повторного возвращения в селективные условия отбирают стабильные клоны, из которых пытаются получить рас-тения-регенеранты. Однако работы, проведенные с получением растений, устойчивых к повышенным солям, а также к токсинам, выделенным из грибов — возбудителей болезней, показали, что устойчивость клетки и растения к исследуемому селективному фактору может совпадать и не совпадать. Прямая корреляция между устойчивостью растений и клеток in vitro отмечена лишь для низких температур, устойчивостью к гербицидам, высоким концентрациям алюминия и другим факторам. [c.143]

    Особая чувствительность к недостатку воды в почве наблюдается у злаков в период формирования у растений репродуктивных органов. Засуха отражается на процессах формирования пыльцы, нарушает ход дифференцировки цветков, приводит к уменьшению числа колосков, угнетению роста и развития главных и боковых стеблей. В этом и состоят причины череззерницы, белоколосицы (пустоколосицы) и других явлений у злаков. [c.352]

    Одноф (Odhnoff, 1957, 1961) полагает, что нарушение процесса деления клеток — не прямое следствие недостатка бора в корнях фасоли. В опытах Рида, например, в верхушечных участках растений подсолнечника и сельдерея при недостатке бора повреждались в первую очередь клетки, расположенные под меристематическими клетки же первичной меристемы оставались нормальными, отмирая уже после того, как погибали клетки, лежащие под ними. Отсюда автор делал вывод, что деление клеток может осуществляться и в отсутствие бора. Недостаток же элемента сказывается на завершающем цикле роста клетки— созревании и дифференцировке. [c.52]

    Доказательства участия бора в процессах, связанных с созреванием и дифференцировкой клеток, были получены при использовании ряда других факторов, влияющих на различные фазы роста клетки (Skok, 1961). Гибберелловая кислота, а также красный свет оказывали определенное воздействие на рост подсолнечника, получавшего недостаточные дозы бора. Симптомы борной недостаточности появлялись значительно раньше у растений, обработанных гибберелловой кислотой, по сравнению-с необработанными появление симптомов задерживалось при выращивании растений на красном свете. Известно, что гибберелловая кислота ускоряет рост, влияя главным образом на растяжение клеток красный свет подавляет растяжение и дифференциацию. [c.53]

    Ответы на воздействие света принадлежат к числу наиболее сложных реакпий. которые разделяются на два типа. Ответные реакпии на длительное воздействие обычно связаны с изменением экснрессии генов, тогда как реакции на кратковременное воздействие обычно не затрагивают этот уровень. Хотя в растении присутствует несколько типов фоторецепторных молекул, наиболее основательно изучен фитохром, белок с большой молекулярной массой (124000 дальтон). Это соединение содержит хромоформ, который реагирует на свет, и может существовать в виде двух форм, способных превращаться одна в другую неактивная форма фитохрома образуется при облучении дальним красным светом (между видимым красным и инфракрасным), а его активная форма - при облучении красным светом. Известно, что фитохром участвует во многих реакциях растения, активируемых светом, включая дифференцировку пластид, прорастание семян, удлинение стебля, инициацию роста листьев и цветение. [c.435]

    Кто бы мог подумать, что столь простое химическое соединение может иметь важнейшее значение для роста, функционирования и эволюции растений Этилен (СН2=СНг) при обычных температурах находится в газообразном состоянии. Как правило, клеточную дифференцировку и эволюцию связывают с генами, поэтому немыслимо предположить, чтобы растительный гормон представлял собой простое газообразное вещество. Констатируя это противоречие, Уоринг и Филлипс С Уаге1п ,. РЬНИрз, 1978) пишут Этилен в роли гормона может показаться курьезом . И все же этилен — это просто газообразный гормон, образующийся у высших растений из аминокислоты Ь-метионина (считающегося его единственным природным биохимическим предшественником). Этилен регулирует процессы развития через механизмы, не связанные непосредственно с биосинтезом белков. По-видимому, он воздействует на пролиферацию клеток, изменяя перенос протонов. [c.93]

    У растений развился совершенный механизм регуляции направления роста при помощи гормонов. В процессе эволюции многоклеточных растений происходила их дифференцировка на корни и стебли. Что представляют собой эти органы с точки зрения воздействия гравитации Корни —это структуры, которые растут в направлении центра гравитации, стебли же растут в противоположном направлении, т. е. они научились противодействовать силе тяжести. Каждое твердое тело, каждая частица испытывают воздействие гравитационных сил, которые притягивают их к центру Земли. Каким же образом растительные клетки преодолевают это воздействие и, более того, так эффективно освобождаются от него Ведь ствол секвойи (Sequoia washingtonia) может возвышаться над землей на 106 м, образуя на этой высоте листья и цветки. [c.239]


Смотреть страницы где упоминается термин Дифференцировка и рост растений: [c.388]    [c.259]    [c.436]    [c.287]    [c.330]    [c.348]    [c.93]    [c.151]    [c.30]   
Смотреть главы в:

Физиология растений -> Дифференцировка и рост растений




ПОИСК







© 2025 chem21.info Реклама на сайте