Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциалы атом-атомные

Рис. 9.3. Атом-атомный потенциал межмолекулярного взаимодействия атома углерода молекулы н-алкана с атомом углерода графитированной термической сажи Фс( рЗ).,, С(ГТС) Рис. 9.3. <a href="/info/300940">Атом-атомный потенциал межмолекулярного взаимодействия</a> атома <a href="/info/261102">углерода молекулы</a> н-алкана с атомом углерода графитированной термической сажи Фс( рЗ).,, С(ГТС)

    Потенциал атом-атомного взаимодействия [c.237]

    При адсорбции на ГТС алканов для определения Ф в этом приближении нужно знать только два атом-атомных потенциала Рс( р=) --с(гтс) и <рн,. .с(гтс). При этом мы допускаем, что эти потенциалы одинаковы для всех атомов С, находящихся в электронной конфигурации и для всех атомов Н в этих молекулах. [c.168]

    Дальнейшие молекулярно-статистические расчеты константы Генри по уравнениям (9.25) — (9.27) или по уравнениям (9.29) — (9.31) требуют знания формы и параметров атом-атомных потенциалов межмолекулярного взаимодействия. Эти расчеты для адсорбции на ГТС показали, что различие в форме потенциалов мало влияет на результаты. Часто используют следующие три потенциала Бакингема — Корнера (6, 8, ехр) [c.168]

    Таким образом, эти потенциалы можно рассматривать как подходящий инструмент для расчетов Ф и К, требующий, однако, дальнейшего уточнения параметров. При расчетах К на ГТС была выбрана более обоснованная форма атом-атомного потенциала межмолекулярного взаимодействия (6, 8, ехр), а именно уравнение (9.34). На рис. 9.3 показан атом-атомный потенциал Рс(5рз)...с(гтс) в этой форме. Как уже было отмечено, форма атом-атомного потенциала мало влияет на результаты молекулярно-статистического расчета при соответствующем подборе параметров этого потенциала. Поэтому для упрощения записи воспользуемся потенциалом Леннард-Джонса (6, 12), т. е. уравнением (9.36). В минимуме потенциальной кривой ( Р/ / )г=г =0,, поэтому из уравнения (9.36) следует, что параметр отталкивания В равен [c.169]

    Проверим теперь, можно ли использовать те же атом-атомные потенциалы для расчета /С1 в случае адсорбции на ГТС цикланов. На рис. 9.5 приведены результаты расчета для адсорбции на ГТС циклопропана, циклопентана и циклогексана. При расчетах были использованы те же атом-атомные потенциалы (9.44) и (9.45), что и для алканов. Рассчитанные и опытные значения К1 для слабо напряженных цикланов— циклогексана (в конформации кресла) и циклопентана (в конформации конверта) в пределах их погрешностей совпадают. Однако для сильно напряженной молекулы циклопропана опытные значения К1 лежат заметно выше рассчитанных. Поэтому можно предположить, что атом-атомный потенциал межмолекулярного взаимодействия атомов С циклопропана с атомами С графита отличается от атом-атомного потенциала <рс ( р ) с (гтс>. для алканов и ненапряженных или слабо напряженных цикланов. Это находится в согласии с тем, что электронная конфигурация атомов С в циклопропане близка к конфигурации sp (в молекуле циклопропана существуют псевдо-л-орбитали трехчленного кольца). Позже будет показано, что примерно на столько же отличается атом-атомный потенциал межмолекулярного взаимодействия с атомом С графита атомов С молекул, образующих двойную или ароматическую связь. Особенно сильно это проявляется при адсорбции циклопропана на ионных адсорбентах (см. лекцию М). [c.173]


    Из показанной возможности переноса атом-атомных потенци а- [c.173]

    Нахождение атом-атомного потенциала ф (sp )... С(г тс) из адсорбции этилена и проверка возможности го переноса на другие алкены [c.175]

    Для определения параметров атом-атомного потенциала Рс (лр=)... с (ГТС) был использован такой же путь, как й при определении параметров атом-атомного потенциала <Рс ( р=)... с (гтс) При этом потенциал фн... с(гтс) был принят независящим от электронной конфигурации атома углерода, с которым связан атом водорода в молекуле углеводорода. Атом-атомный потенциал с( р>)... с (гтс) был определен с помощью экспериментальных значений К[ для адсорбции на ГТС в качестве опорной молекулы простейшего алке-на — этилена. На основании опытных значений К для этилена было получено следующее выражение для атом-атомного потенциала в форме Бакингема — Корнера (ф, кДж/моль, г, нм)  [c.175]

    Таким образом, найденный с помощью экспериментальных данных по абсорбции этилена на ГТС атом-атомный потенциал <Рс ( р ),, , с (ГТС) может быть перенесен и на адсорбцию на ГТС других алкенов. Отметим, в частности, что применение атом-атомного потенциала (9.47) в расчете К для адсорбции циклопропана на ГТС приводит к согласию с опытом (см. рис. 9.5). [c.176]

    Нахождение атом-атомного потенциала фс< р )... С(гтс) из адсорбции ацетилена и проверка возможности его переноса на другие алкины [c.177]

    По найденным экспериментально значениям К для. ацетилена таким же, как для этилена, путем был получен атом-атомный потенциал (ф, кДж/моль г, нм)  [c.177]

    Близость атом-атомного потенциала <рс(ар).. С( тс) [c.178]

    В ароматических углеводородах атомы углерода находятся в особом сопряженном состоянии. Для уточнения параметров атом-атомного потенциала фс(ар)... с(гтс) были использованы экспериментальные значения К для адсорбции бензола на ГТС. На рис. 9.10 пунктирной линией представлены результаты расчета Кг для адсорбции на ГТС бензола на основе атом-атомных потенциалов <Рс с (ГТС) (9.45) и фн...с(гтс) (9.44). Из рисунка видно, что экспериментальные значения К лежат выше вычисленных таким путем. Наилучшее согласие с экспериментальными данными получилось при использовании того же выражения (9.47) для потенциальной ( )ункции межмолекулярного взаимодействия атома С молекулы ароматического углеводорода с атомом С ГТС, что и для потенциала <рс( р )... с(гтс), полученного для адсорбции на ГТС этилена. Как уже отмечалось, сопряжение я-связей мало сказывается на межмолекулярном взаимодействии с ГТС (см. рис. 9.8). [c.178]

    Атом-атомный потенциал межмолекулярного взаимодействия с ГТС кислорода органических молекул зависит от электронной конфигурации атома кислорода в молекуле. Из рис. 9.16 видно, что потенциал (9.51) дает заниженные значения К для адсорбции на ГТС кетона — циклогексанона. Согласие с экспериментом дает следующий атом-атомный потенциал (ф, кДж/моль г, нм)  [c.183]

    Расчет величины Бз по уравнению (12.2) встречает трудности и сделан только для одноатомных молекул. Применение метода атом-атомных потенциалов для расчета 12 с учетом взаимной ориентации сложных молекул на поверхности адсорбента еще не осуществлено. В отличие от расчета первого вириального коэффициента для адсорбции углеводородов на ГТС (константы Генри, см. лекцию 9) для расчета второго вириального коэффициента, помимо атом-атомных потенциалов фс...с и фн...с, необходим атом-атомный потенциал фн-н. Это создает дополнительные трудности на пути количественного теоретического расчета изотерм адсорбции на молекулярном уровне даже при небольших Г. [c.227]

    Приведенные модельные потенциалы не учитывают взаимной ориентации взаимод. частиц. Для расчета взаимод. многоатомных молекул произвольной формы Т. Хиллом, а затем А.И. Китайгородским был разработан метод атом-атомных потенциалов. Согласно этому методу, межмол. потенциал У записывается в виде суммы потенциалов парных взаимод. каждого атома а одной молекулы с каждым атомом Ь другой, причем выражается к.-л. простой аналит. ф-цией, напр, потенциалом Букингема [c.14]

    Несмотря на ряд серьезных допущений, представление потенц. энергии с помощью потенциалов Н. в. позволяет с хорошей точностью судить о конформации молекул, равновесной кристаллич. структуре, рассчитывать частоты внутри- и межмол. колебаний, упругие св-ва в-ва, термодинамич. ф-ции, локальную структуру дефектов в кристаллах, ф-ции радиального распределения в жидкостях, вириальные коэф. в газах, параметры адсорбции газов на твердых телах и т. п. Полезным св-вом модели атом-атомных потенциалов является возможность описания одними и теми же потенциалами широкого круга родственных по хим. строению мол. систем ( переносимость потенциалов). [c.200]

    Выбор формы атом-атомного потенциала межмолекулярного взаимодействия [c.255]

    Экспериментальное определение константы встречает большие трудности, так как изменение значения этой константы практически полностью можно компенсировать изменением значений остальных параметров [278—280]. Поэтому при определении атом-атомного потенциала межмолекулярного взаимодействия на основании макроскопических свойств значение константы С2 обычно оценивается с помощью приближенных квантовомеханических формул [278—280, 283]. [c.264]

    Влияние формы атом-атомного потенциала межмолекулярного взаимодействия на значение константы Генри [c.284]


    Как видно из табл. IX,1, при фиксированных значениях /кТ и Го величины и Фц слабо зависят от формы атом-атомного потенциала. Однако Кх заметно зависит от формы этого потенциала. Поэтому при расчетах термодинамических характеристик адсорбции необходимо использовать теоретически наиболее оправданную форму для атом-атомного потенциала. [c.285]

    При интегрировании атом-атомного потенциала по одной наружной базисной плоскости графита, принимая равномерное распределение плотности атомов С в этой плоскости. В этом приближении [c.287]

    MINDO Потенциал атом-атомного взаимодействия Теплоты образования, потенциалы ионизации. Длины связей Спектр [c.358]

    Прежде всего было установлено, что полученный атом-атомный потенциал <рс (лрз)... с(гтс) дает при адсорбции этилена на ГТС заниженные значения 1п [если принять, что фн... с(гтс) (9.44) остается неизменным]. Таким образом, межмолекулярное взаимодей- ствие с ГТС атомов углерода молекул, находящихся в конфигурации 5р2, сильнее, чем в рассмотренном выше случае адсорбции молекул с атомами углерода в конфигурации хр . Уменьшение Кг и 1 при адсорбции на ГТС этилена по сравнению с этаном (см. табл. 1.2) происходит за счет уменьшения числа атомов водорода в мо- лекуле этилена по сравнению с молекулой этана. Этот пример показывает, что адсорбция на ГТС позволяет выявить влияние на межмолекулярное взаимодействие электронной конфигурации атомов углерода в молекулах углеводородов. [c.175]

    Следует отметить, что влияние электронной конфигурации атомов в молекуле на межмолекулярное взаимодействие не было выявлено при исследовании методом атом-атомных потенциалов межмолекулярных взаимодействий в молекулярных кристаллах углеводородов или в реальных газах, В этих случаях большое значение лмеет потенциал фн... н, поскольку на периферии молекул углеводородов расположены атомы водорода. При адсорбции же малых доз углеводородов на ГТС взаимодействием адсорбат — адсорбат можно пренебречь, так что потенциал фн...н в расчет К не входит. [c.175]

Рис. 9.14. Рассчитанные, (линии) и экспериментальные (точки) значения констант Генри К для адсорбции на ГТС при разных температурах ряда циклических эфиров. Опорное вещество — диак-сан, для которого по экспериментальным значениям уточнены параметры атом-атомного потенциала ф и найден потенциал фоофир)... с(Гтс) (9.51) Рис. 9.14. Рассчитанные, (линии) и экспериментальные (точки) <a href="/info/264707">значения констант</a> Генри К для адсорбции на ГТС при <a href="/info/50238">разных температурах</a> <a href="/info/1573801">ряда циклических</a> эфиров. Опорное вещество — диак-сан, для которого по <a href="/info/363121">экспериментальным значениям</a> уточнены <a href="/info/1571795">параметры атом-атомного потенциала</a> ф и найден потенциал фоофир)... с(Гтс) (9.51)
    Форма атом-атомного потенциала межмолекулярного взаимодействия. Принимая для потенциала сил отталкивания экспоненциальную (VIII,10) или степенную (VIII,11) функцию и учитывая один, два или более членов степенного ряда (VIII,12) для энергии дисперсионного притяжения, можно получить ряд моделей потенциала межмолекулярного взаимодействия. Для описания межмолекулярного взаимодействия двух силовых центров при адсорбции были использованы главным образом следующие модели 1) потенциал Леннард-Джонса (6,12) [35-38, 40, 42-44, 52, 54-65, 67-74, 76, 78, 79, [c.258]

    Поскольку атом-атомный потенциал <ро( фир)...с(гто был найден [уравнение (9.51)], можно было его использовать для определения неизвестных параметров молекул эфиров хроматоскопическим ме- [c.201]

    При обсуждении рис. 11.7 было отмечено, что расчет АГп ,с,1 для адсорбции циклопропана на основе исправленного с использованием экспериментальных данных по адсорбции этана потенциала Фс( р=) г дал резко заниженные результаты. По-видимому, это объясняется тем, что из-за очень сильного напряжения цикла электронная конфигурация атомов углерода в молекуле циклопропана близка к Действительно, даже для адсорбции циклопропана на ГТС расчет К с помощью атом-атомного потенциала Тс<1рп - С(гтс> дал немного заниженные результаты (см. рис. 9.5), в то время как расчет с помощью потенциала -. ссгтс) дал значения /(ьпрактически совпадающие с газохроматографическими измерениями. При такой конфигурации атомов углерода и связей в цикле молекула циклопропана должна обладать постоянными электрическими моментами. Если эти моменты аппроксимировать суммарным точечным квадрупольным моментом, локализованным в центре- цикло-пропанового кольца, то для Ф можно воспользоваться уравнением [c.220]

    Понятие Н. в. используют прн расчетах нотенц. эиергии системы (молекулы, кристалла, жидкости) на основе простых аналит. моделей типа модели атом-атомных потенциалов. Предполагается, что изменение потенц. энергии пры изменении геом. конфигурации молекулы м. б. представляю в виде отдельных вкладов, сопоставляемых изменениям длин связей, валентных и торсионных углов, а также вкладов, соответствующих внутримолекулярным Н.в. атомов, разделенных по меньшей мере тремя (реже-двумя) хим. связями. В широком смысле-термин Н.в. относят и к межмол. взаимодействиям. [c.199]

    Числовые квантовомеханические расчеты энергии отталкивания м мен производились главным образом для взаимодействия простейших молекул Не.. . Нз [16, 17], На.. . Hj [20—22, 24]. Энергия Мобмен В этих случаях оказалась неаддитивпой по атомам молекулы Нг- Эти расчеты указывают на более слабую зависимость потенциала сил отталкивания от взаимной ориентации молекул, чем это следует из атом-атомного приближения. Однако если учесть небольшое (около 0,1 A) смещение центра сил отталкивания валентно связанного атома водорода от его ядра, то потенциалы отталкивания атома Не и молекулы Hj или двух молекул Hj в хорошем приближении [c.250]

    Потенциалы ( 111,14)—( 111,16) дают зависимость энергии взаимодействия ф двух силовых центров только от расстояния между ними. Силовые центры молекул и твердых тел являются анизотропными. Энергия дисперсионного взаимодействия анизотропных силовых центров зависит не только от расстояния между ними, но и от взаимной ориентации их эллипсоидов поляризуемости [27, 284]. Решетка графита, например, обладает сильной анизотропией поляризуемости [285]. Поэтому потенциал дисперсионного взаимодействия силового центра молекулы с атомом углерода графита должен сильно зависеть от взаимной ориентации их эллипсоидов поляризуемости [286—288]. Эту зависимость потенциала взаимодействия двух силовых центров необходимо учесть при объяснении различия потенциала Ф взаимодействия молекулы адсорбата с базисной и призматической гранями решетки графита [286—288]. Были проведены расчеты энергии Ф взаимодействия атомов инертных газов и СО 2 с базисной и призматической гранью графита, учитывая эффект анизотропии атом-атомного потенциала [286, 287], Однако потенциал Фдисп дисперсионного взаимодействия силового центра молекулы с базисной гранью графита, полученный на основании потенциала дисперсионного взаимодействия силового центра молекулы с атомом углерода графита [c.259]

    Константу сил отталкивания В в формулах (VIII,10) и (VIII,И) можно выразить через равновесное расстояние го и остальные параметры атом-атомного потенциала межмолекулярного взаимодействия, используя условие равновесия всех составляющих сил притяжения и сил отталкивания при г = т о [c.265]

    В кристаллических решетках углеводородов расстояние наибольшего сблин<ения атомов водорода соседних молекул равно 2,4— 2,6 А [310]. Часто это значение принимается равным равновесному расстоянию / о,н....н межмолекулярного взаимодействия двух атомов Н. Однако расчеты кристаллических решеток углеводородов на основании атом-атомных потенциальных функций межмолекулярного взаимодействия С и Н показывают [172, 186, 228], что расстояние наибольшего сближения атомов Н соседних молекул в решетке приблизительно на 0,3 А меньше значения равновесного расстояния 0,Н...Н) принятого в расчетах потенциала межмолекулярного взаимодействия двух атомов Н. Это обусловлено главным образом тем, что расстояния между атомами сложных молекул в кристаллической решетке определяются минимумом потенциальной энергии межмолекулярного взаимодействия всех силовых центров рассматриваемой молекулы со всеми силовыми центрами остальных молекул, а не потенциальным минимумом межмолекулярного взаимодействия только наружных атомов Н. Таким образом, расстояние наибольшего сближения атомов Н в молекулярных кристаллах пе равно значению о,н...нДля потенциальной функции межмолекулярного взаимодействия этих двух изолированных атомов Н. Чтобы из атом-атомных потенциальных функций межмолекулярного взаимодействия получить расстояние наибольшего сближения атомов Н в кристаллической решетке к-гексана, равное экспериментально наблюдаемому, для равновесного расстояния Го,н...н взаимодействия двух атомов Н необходимо принять значение, равное 2,8—3,2 А [228, 229]. Необходимость введения более высокого, чем 2,4—2,6 А, значения для Го, н. .. н было отмечено и в других работах [173, 227]. [c.266]

    Расчеты константы Генри для адсорбции одноатомных молекул на базисной грани полубесконечной решетки графита производились при использовании разных форм для атом-атомного потенциала ф Сюзерленда (6, оо) [1], Леннард-Джонса (6, 12) [1—5], Бакингема (6, ехр) [5] и Бакингема — Корнера (6, 8, ехр) [5]. Эти атом-атомные потенциалы различаются как формой члена, аппроксимируюш его потенциал сил отталкивания, так и числом членов,описывающих потенциал сил дисперсионного притяжения. Были сопоставлены рассчитанные значения константы Ki при фиксированных значениях параметров г кТ и Гд потенциалов ф взаимодействия атома благородного газа с атомом углерода графита в форме (VIII,17) [5] с рассчитанными значениями Ki при фиксированных значениях параметров Фд кТ и Zg для соответствующих потенциальных функций Ф взаимодействия одноатомной молекулы с базисной гранью полубесконечной решетки графита в форме [1, 5]  [c.284]

    Значения KJz , иолученные при использовании потенциала (6, 12), зависят лишь от значения параметра Фд кТ. Значения K iz , полученные при использовании потенциала (6, ехр), зависят от трех параметров Ф /кТ, и д, а значения Kilz , полученные при использовании потенциала (6, 8, ехр), зависят от четырех параметров Фд/кТ, Zg, д и i i. Параметры д и / i были приняты соответственно равными 36 нм 1 и 0,2 d . Как видно из табл. IX,2, значения Ki/Zg различаются менее чем на 5% для рассмотренных трех атом-атомных потенциалов. Таким образом, при заданном способе суммирования потенциала ф и фиксированных значениях параметров Фд/кТ и Zq потенциала Ф значения Ki мало чувствительны к принятой форме для атом-атомного потенциала ф. Они определяются главным образом значениями параметров Фд кТ и Zg. [c.286]

    В табл. IX,3 приведены значения Zg/го, Ф кТ и Ki/r для адсорбции одноатомных молекул па базисной грани графита при фиксированных значениях параметров е/кТ ш = d, рассчитанные при использовании следующих приближений при суммировании атом-атомного потенциала Леннард-Джонса (VIII,14) по атомам углерода графита. [c.286]


Смотреть страницы где упоминается термин Потенциалы атом-атомные: [c.6]    [c.177]    [c.182]    [c.284]    [c.286]   
Биофизика (1988) -- [ c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Атом атом потенциалы



© 2025 chem21.info Реклама на сайте