Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фильтрование интенсификация процессов

    Эффективность депрессорных присадок при кристаллизации твердых углеводородов связывают с их полярностью, снижением сольватации молекул парафина молекулами масла, нарушением агрегативной устойчивости дисперсии парафина и повышением при этом компактности кристаллических агрегатов, образованием ассоциированных комплексов молекул присадки и твердых углеводородов, что приводит к увеличению скорости фильтрования в процессе депарафинизации масляного сырья. Изучение влияния депрессорных присадок на поведение суспензий твердых углеводородов в сопоставлении с электрокинетическими исследованиями позволяет сделать вывод о возможной электростатической природе их действия. В работе [104], проведенной в этом направлении, в качестве критерия эффективности маслорастворимых присадок, используемых для интенсификации процесса депарафинизации, предложено значение энергетического барьера, создаваемого присадками на поверхности частиц дисперсной фазы в их суспензиях. Энергетический барьер учитывает кроме электрокинетического потенциала частиц дисперсной фазы и их размеры. В работе показана возможность применения маслорастворимых присадок для создания электрического заряда у частиц твердых углеводородов, обеспечивающего образование устойчивых коллоидных систем. Электрокинетические исследования реальных систем твердых углеводородов показали, что присадки, обладающие только депрессор-ным действием, эффективны в дистиллятном сырье. Для остаточного сырья следует использовать металлсодержащие многофункциональные присадки. Однако многокомпонентность масляных рафинатов, сложность состава твердых углеводородов и присутствие двух ПАВ при осуществлении процесса депарафинизации нефтяного сырья в присутствии присадок сильно усложняют изучение механизма кристаллизации твердых углеводородов, что, в свою очередь, затрудняет направленный поиск наиболее эффективных присадок для интенсификации этого процесса. [c.171]


    Интенсификация процессов фильтрования может быть достигнута двумя различными путями. По первому пути полученную и подлежащую разделению суспензию обрабатывают таким образом, чтобы в процессе фильтрования образовался осадок с возможно меньшим сопротивлением. Для этого к суопензии добавляют вспомогательные вещества, флокулянты или электролиты. [c.18]

    Основные параметры. Фактор разделения (критерий Фруда) характеризует степень интенсификации процесса в центрифуге по сравнению с аналогичным процессом в гравитационном поле. При этом осадительное центрифугирование сопоставляют с гравитационным отстаиванием, а центробежное фильтрование — с фильтрованием под гидростатическим давлением при одинаковых толщинах слоев суспензии. [c.195]

    Значение процессов фильтрования возрастает с увеличением масштабов производства химической и родственных ей отраслей промышленности. Это объясняется тем, что процесс разделения суспензии нередко вызывает затруднения, обусловленные главным образом большим сопротивлением осадка и соответственно малой скоростью фильтрования. При этом для достижения заданной производительности фильтровальной установки требуется большое число фильтров определенной конструкции. Поэтому возникла тенденция к увеличению размеров фильтровального оборудования и интенсификации процессов фильтрования. [c.17]

    Значительно целесообразнее использовать возможности интенсификации процессов фильтрования путем уменьшения удельного сопротивления осадка при соответствующем повышении скорости фильтрования. [c.18]

    В лабораторной практике используются центрифуги двух типов фильтрующие, предназначенные для интенсификации процесса фильтрования, и стаканные (пробирочные), применяемые для ускорения оседания взвещенного в жидкой фазе вещества. [c.110]

    ДЛЯ интенсификации процессов обезмасливания, а увеличение концентрации, необходимой для достижения максимальной скорости фильтрования, должно окупиться их низкой себестоимостью, улучшением качества получаемого церезина и увеличением производительности установки. [c.186]

    Фильтрование. В процессах фильтрования и пропитки твердых тел происходит движение жидкой фазы относительно пор и каналов в твердой фазе. Интенсификация этих процессов может быть достигнута при увеличении скорости относительного движения жидкости. Не случайно поэтому многочисленные работы были посвящены исследованиям влияния вибраций, ультразвука и ударных волн на течение жидкостей в капиллярах. В коллоидных системах существенное влияние на процесс начинают приобретать электрические явления, и поэтому для интенсификации технологических процессов, например в мембранных аппаратах для ультрафильтрации, используют электрические поля. [c.126]


    Выпадающую гидроокись железа удаляют фильтрованием. При концентрации золота 1—2 л и при температуре электролита 18—25° С плотные осадки золота получаются лишь при плотностях тока 0,1—0,2 а дм с выходом по току 25—35%. Для депассивации золотых анодов в электролит вводят сегнетову соль. При применении более концентрированных по металлу электролитов (10—25 г л Ли) и нагревании электролита до 70° С возможна интенсификация процесса (катодная плотность тока до 6 а/дм ). При работе с нерастворимыми анодами (графит, платина, нержавеющая сталь) в электролите могут накапливаться ионы СЫ". [c.209]

    Интенсификация процессов растворения может быть осуществлена несколькими способами. Наиболее универсальным способом, применимым ко многим массообменным процессам, является увеличение суммарной поверхности дисперсных (в данном случае растворяющихся) частиц, к чему стремятся в большинстве случаев. Однако здесь имеется разумный предел, связанный с тем, что, во-первых, большая степень измельчения требует значительно больших затрат, и, во-вторых, слой изначально мелких частиц при растворении в ненеремешиваемом слое дисперсного материала даст уже с самого начала процесса высокие гидродинамические сопротивления при фильтровании через него растворителя. При осуществлении процесса растворения во взвешенном состоянии, т. е. в аппаратах псевдоожиженного слоя или в аппаратах с механическим перемешиванием, использование мелких частиц приведет к малым скоростям скольжения, а следовательно, к низкой интенсивности внешней массоотдачи от поверхности частиц. [c.116]

    Хлорная промышленность все в большей степени переходит к использованию дешевого сырья в виде естественных рассолов и рассолов, получаемых подземным растворением соли. Операции подготовки и очистки рассола практически на всех крупных заводах переведены на непрерывный процесс с осветлением растворов в осветлителях различных типов. Широкое применение получают осветлители со шламовым фильтром. Для интенсификации процесса осветления применяют флокулянты, например гидролизованный полиакриламид. Для фильтрования рассола используются автоматические насыпные фильтры или фильтры Келли [54]. [c.22]

    Фильтровальные вспомогательные вещества (ФВВ) —это тонкозернистые либо тонковолокнистые инертные материалы, образующие осадок высокой пористости, которые используют для интенсификации процесса фильтрования малоконцентрированных суспензий, содержащих высоко дисперсную твердую фазу. ФВВ либо предварительно наносят на фильтрующую перегородку, либо добавляют в осветляемую суспензию, либо комбинируют эти способы. [c.172]

    Т. А. Малиновская, Пути интенсификации процессов фильтрования вы- [c.430]

    Применение вспомогательных веществ для интенсификации процессов фильтрования. Как уже отмечалось, вспомогательные вещества применяются для интенсификации процессов фильтрования разбавленных суспензий с высокодисперсной или легко деформируемой твердой фазой. Обычно этот метод применяется для [c.261]

    Для интенсификации процесса фильтрования и улучшения ка- [c.6]

    Флокулянты могут применяться самостоятельно и в совокупности с коагулянтами. Самостоятельно они применяются при обезвоживании осадков городских и производственных сточных вод фильтрованием и центрифугированием, а также при уплотнении осадков на иловых площадках. Флокулянты также используют для интенсификации процессов осаждения взвещенных веществ в отстойниках, активного ила, осветления и обесцвечивания природных, городских и производственных сточных вод, флотации. [c.185]

    Несмотря на большое число работ по интенсификации процессов депарафинизации и обезмасливания путем кристаллизации твердых углеводородов в избирательных растворителях, эту важную народнохозяйственную задачу нельзя считать решенной. Все рассмотренные пути совершенствования промышленных процессов не позволили существенно увеличить скорости фильтрования суспензий твердых углеводородов нефти и повысить их выход в расчете на потенциальное содержание углеводородов в сырье. Это вызывает необходимость более эффективной модернизации существующей технологии и создания принципиально новых процессов, позволяющих активно воздействовать на скорость образования кристаллов и их рост. [c.96]

    Введение поверхностно-активных веществ в нефтяные дисперсные системы нарушает их агрегативную устойчивость, влияя на кристаллизацию твердой фазы. Характер межмолекулярного взаимодействия осложняется присутствием в системах природных ПАВ-смол. На это указывает сложная зависимость скорости фильтрования суспензий и четкости разделения фаз (рис. 3.1 и табл. 3.2) от концентрации полярных модификаторов при интенсификации процесса депарафинизации остаточного сырья. [c.99]

    При обезмасливании петролатума, полученного из малосернистых нефтей и отличающегося более высоким содержанием парафино-нафте-новых углеводородов, их структурой и меньшим содержанием смол, максимальные скорости фильтрования достигаются при более высоких концентрациях модификаторов структуры. Максимальное увеличение скорости фильтрования суспензии твердых углеводородов отмечено при концентрации этого модификатора, равной 0,1-0,5%. Для интенсификации процесса обезмасливания петролатума наиболее эффективным с точки зрения скорости фильтрования оказался модификатор структуры полимерного типа, введенный в систему в концентрации 0,5%. Однако с увеличением концентрации модификатора наряду с увеличением скорости фильтрования суспензии твердых углеводородов растет и содержание масла в полученном церезине  [c.114]


    Из фильтров стоки с раствором серной кислоты поступают в реактор, где происходит нейтрализация серной кислоты. В реактор одновременно с кислотными стоками подается 3—5%-ное известковое молоко. Для интенсификации процесса в реактор подается также-0,1 %-ный раствор полиакриламида. После перемешивания в течение 15—20 мин нейтрализованные стоки из реактора поступают в осветлитель вертикального типа со взвешенным осадком и встроенным в верхней части фильтром, представляющим собой металлическую решетку с двумя слоями гравия и одним слоем стекловолокна. Стоки, проходя через слой взвешенного осадка, зону осветления и зону дополнительного фильтрования, поднимаются к кольцевому сборному желобу и самотеком отводятся в емкость для очищенной воды. [c.568]

    Интенсификация процесса непрерывной очистки рассола достигается в аппарате вертикального типа (ОВР), в котором происходит фильтрование через взвешенный слой осадка. Этот аппарат имеет большую производительность, чем описанный выше, более прост и легко монтируется. [c.335]

    Действующие фильтры, оснащенные сложной и малонадежной системой регенерации или не имеющие ее, могут быть с небольшими затратами переоборудованы на пульсационную регенерацию для интенсификации процесса фильтрования. [c.90]

    ИНТЕНСИФИКАЦИЯ ПРОЦЕССОВ ФИЛЬТРОВАНИЯ [c.77]

    Была изучена [93] возможность интенсификации процесса депарафинизации остаточного рафината из смеси западно-сибирских нефтей в растворе МЭК — толуол (1 1) при помощи присадок разной химической природы (металлсодержащих, полимерных, карбамидсодержащих, диалкилдитиофосфатных с разным числом атомов углерода в углеводородном радикале). Наиболее эффективными с точки зрения улучшения основных показателей этого процесса оказались многофункциональные алкилфенольные металлсодержащие присадки АФК и В-167, а также карбамидсодержащая присадка В-526 (рис. 57). В отличие от аналогичных исследований этого процесса, описанных в литературе, авторами впервые было показано, что уже в области ранее не изучаемых малых концентраций вводимых присадок (0,02—0,04% масс, на рафинат), особенно в случае присадки АФК, заметно уменьшается длительность фильтрования суспензий твердых углеводородов при одновременном увеличении выхода депарафинированного масла. [c.167]

    О. используют для предотвращения образования накипи в теплообменной аппаратуре, при обогащении полезных ис-KonaeNHJx, для интенсификации процессов фильтрования, сорбции, сгущения, флотации, мокрого пылеулавливания, адсорбции газов, отмывки и т.д. [c.386]

    Экономическая эффективность применения микрофильтров для механической очистки оценивается технико-экономическим расчетом, который производят применительно к I территориальному поясу по методике, разработанной во ВНИИ ВОДГЕО. При этом сравнивались два варианта технологических схем (рис. 2.44) при пропускной способности очистной станции 50, 100 и 200 тыс. м /сут. В I варианте сточные воды дчищаются по традиционной схеме, т. е. проходят решетки, песколовки, первичные радиальные отстойники, аэротенки, вторичные радиальные отстойники, хлораторную и выпускаются в водоем. По II варианту в целях интенсификации процесса очистки сточных вод первичные радиальные отстойники заменены микрофильтрами. Были приняты следующие исходные данные эффективность осветления сточной воды по взвешенным веществам в первичных отстойниках и микрофильтрах при исходной концентрации взвешенных веществ 150—200 мг/л одинакова и составляет 40—45 % скорость фильтрования 25—30 м/ч. Микрофильтр оснащен сеткой с ячейками размером 0,04x0,04 мм расход на промывку составляет 6 % напор промывной воды 15 м. В первичных отстойниках для достижения такой же степени осветления период отстаивания принят 1,5 ч. [c.93]

    Так как при фильтровании высокодисперсных трудноразделяемых суспензий основное сопротивление оказывает слой осадка, любые методы непрерывного удаления его с перегородки значительно интенсифицируют процесс. К методам разрушения структуры и удаления осадка относятся непрерывный смыв скоростным напором суспензии, вибрация, пульсация, центробежная сила и др. [89]. В большей части конструкций фильтров, на которых используются эти методы, возможна значительная интенсификация процесса фильтрования, но не обеспечивается выгрузка отжатого осадка и по существу эти фильтры являются фильтрами-сгустителями. Метод разрушения структуры и удаления осадка с перегородки [90], основанный на том, что суспензия непрерывно турбулизируется в узком зазоре между вращающимися и неподвижными элементами, позволяет в ряде случаев выгружать осадок с влагосодержанием не выше, чем у отжатого осадка, выгружаемого из фильтров других конструкций [91]. В этом случае образующийся осадок в результате турбулентности потока находится все время как бы во взвешенном состоянии, и фильтрование происходит через взвешенный слой осадка и перегородку, на которой не образуется плотный слой осадка. Пористость взвешенного (динамического) слоя осадка значительно выше, чем стабильного, отлагающегося на ткани при обычном фильтровании под давлением в связи с этим производительность динамического фильтра с [c.130]

    Если деполимеризат (смесь диметилциклосилоксанов) не удовлетворяет техническим требованиям (в основном по влажности), его из сборников 6я8 подают насосом 9 в аппарат 10 для осушки. Осушка проводится в вакууме, причем для интенсификации процесса через деполиме-ризат барботируют сухой алюминия азот. После фильтрования. на фильтре 11 высушенный деполимеризат поступает в емкость 12 и оттуда направляется на по-следуюш ую стадию — полимеризацию. [c.191]

    Скорость осаждения твердой фазы суспензии играет двоякую роль в вопросах выбора типа оборудования. С одной стороны, высокая скорость осаждения твердой фазы позволяет использовать для разделения суспензий процесс осаждения вместо процесса фильтрования. Первый процесс связан с использованием более дешевого и простого оборудования (отстойники, отстойные центрифуги). Если достаточно полного разделения суспензии не происходит в процессе осаждения, то путем предварительного сгущения суспензии достигается интенсификация последующего процесса фильтрования. После сгущения суспензии могут быть использованы такие типы фильтров, которые неприменимы для разбавленных суспензий (например, барабакный" ленточный вакуум-фильтры). [c.84]

    Иидзима и др. [27] предлагают для интенсификации процесса обезжелезивания добавлять в избыточном количестве известковое молоко, а затем, отделив образовавшуюся гидроокись железа фильтрованием, нейтралйзовывать избыток щелочи добавлением солей алюминия. Эффект заключается в образовании алюминатов кальция. [c.323]

    Одним из существенных факторов интенсификации процессов очистки воды от коллоидно-дисперсных веществ является применение флокулянтов. Они ускоряют хлопьеобразование гидроксидов алюминия и железа, осаждение хлопьев, увеличивают плотность коагулята и степень осветления воды. В осветлителях со взвешенным осадком флокулянты способствуют увеличению содержания частиц во взвешенном слое и уменьшению выноса взвесей из него, что стабилизует работу аппаратов и повышает их производительность. Улучшаются адгезионные свойства коагулированной взвеси и фильтрата (очищаемой воды), увеличивается скорость фильтрования, сокращается расход воды на промывку, повышается грязеемкость фильтров, а также увеличивается производительность отстойников, осветлителей, фильтров, центрифуг и другого оборудования, используемого для разделения жидкой и твердой фаз. При этом значительно расширяется область оптимальных значений pH и сокращается остаточное содержание алюминия и железа в обрабатываемой воде. Применение флокулянтов особенно эффективно при низких температурах очищаемой воды и пониженных значениях pH (кислые сточные воды). В ряде случаев, особенно при обработке флокулянтами малоцветных вод, снижается на 10—40 % расход коагулянтов, возрастает степень осветления и обесцвечивания воды, а также увеличивается примерно в 1,5 раза производительность очистных сооружений. [c.184]

    Выделение из воды тонкодисперсных твердых взвесей их коагуляцией и фильтрованием широко применяют во многих технологических процессах — в различных химических и металлургических производствах, при обогащении полезных ископаемых и очистке сточных и оборотных вод. Возможность значительной интенсификации процессов сгущепия и фильтрования с помощью магнитной обработки основана на улучшении коагуляции и уменьшении образования инкрустаций, описанных в п. 2, гл. П. При коагуляции взвесей скорость оседания их повышается, при этом возрастает и водопроницаемость кека на фильтрах. С уменьшением забивки пор фильтроткани скорость фильтрации повышается и срок службы ткани увеличивается. [c.169]

    В качестве одного из ранних методов интенсификации процессов выделения твердых углеводородов из рафинатов и гачей предложено [171] проводить кристаллизацию твердых углеводородов в среде барботи-рующего инертного газа (азот или диоксид углерода). Суть метода заключается в образовании подвижных центров кристаллизации-пузырьков инертного газа, на которых сорбирована часть смолистых веществ, присутствующих в сырье. Время диффузии молекул твердых углеводородов к центрам кристаллизации сокращается и устраняется неравномерная пересыщенность раствора, а это способствует образованию крупных дендритных агрегатов, хорошо отделяемых при фильтровании от раствора. Этот процесс тоже не получил промышленного применения в нефтепереработке. [c.88]

    Влияние катионного собирателя АНП на процесс фильтрования кварцевых суспензий. Э. В. Просвир ни на, М. Б. Барбин. Вопросы интенсификации процессов химической технологии. Сб. трудов УПИ им. С. М. Кирова, Л Ь 205, 1972, стр. ИЗ—117. [c.139]

    Одной из главных задач научно-исследовательских институтов является всесторонняя помощь заводам в совершенствовании узлов фильтрованой аппаратуры, определении области применения фильтров, разработке й внедрении новой фильтровальной аппаратуры, совершенствовании методов расчета фильтров, в частности, создании единых методик определения параметров процесса и расчета всей фильтровальной аппаратуры, проведении исследований интенсификации процессов фильтрации, применения фильтрующих сред из синтетических матералов. [c.12]


Смотреть страницы где упоминается термин Фильтрование интенсификация процессов: [c.363]    [c.8]    [c.75]    [c.485]    [c.183]    [c.140]    [c.103]    [c.132]    [c.98]   
Фильтрование (1971) -- [ c.20 , c.371 ]




ПОИСК





Смотрите так же термины и статьи:

Интенсификация процесса

Фильтрование



© 2025 chem21.info Реклама на сайте