Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель каталитическое действие

    Процесс образования покрытия включает ряд последовательно протекающих реакций. В первой стадии процесса происходит разложение гипофосфита водой, которому способствует каталитическое действие поверхности никеля. Эту реакцию можно предста- [c.410]

    Никель. Восстановление солей никеля гидразином при обычных условиях происходит очень медленно. Однако при добавлении к щелочным растворам тартрата или аммиаката никеля незначительных количеств таких катализаторов, как платина или палладий, образование металлического никеля происходит легко [65]. Для объяснения этого факта было высказано предположение, согласно которому каталитическое действие таких благородных металлов, как платина и палладий, состоит в том, что они обусловливают диссоциацию гидразина на азот, аммиак и активный водород, который восстанавливает затем соли никеля. Каталитическое действие таких благородных металлов, было использовано в процессе приготовления металлического никеля [66]. [c.132]


    Назначение. Деактиваторы (инактиваторы, пассивато-ры) металлов — это присадки, подавляющие каталитическое действие металлов на окисление топлив. Деактиваторы, как правило, добавляют к топливу совместно с антиокислителями в концентрациях, в 5—10 раз меньших, чем антиокислитель. Они могут быть также компонентами двух- и трехкомпонентных присадок [1 — 11]. Установлено, что металлы переменной валентности являются сильными катализаторами окисления углеводородных топлив [1—5, II —17]. Металлы постоянно контактируют с топливами — в нефтезаводской, перекачивающей аппаратуре и в двигателях, входят в виде микропримесей в их состав. В топливных дистиллятах обнаружено присутствие алюминия, берилия, ванадия, висмута, железа, золота, кремния, калия, кальция, кобальта, меди, молибдена, натрия, никеля, олова рубидия, серебра, свинца, стронция, титана, цинка и др. [18—21]. [c.122]

    Никель каталитического действия на кислые растворы нерекиси водорода фактически ие оказывает. Коллоидная гидроокись никеля Ni(OH). , осажденная действием щелочи, является лишь слабым катализатором 175, 183]. Исследовано каталитическое действие смесей закиси-окиси никеля Ni.p с другими окислами [168] и сернокислого никеля на носителе [184] в отношении перекиси водорода. Из ряда изученных носителей никеля только силикагель в известной степени активирует катализ. Это усиливающее действие проходит через максимум при увеличении относительного содержания никеля на силикагеле. [c.406]

    Металлический никель (в диспергированном виде или на носителях) значительно ускоряет вытеснение алкильных групп, что дает возможность проводить полимеризацию иным образом—в две стадии. Вначале при 100—120 °С наращивают цепь до определенной средней длины, а затем добавляют никель или пропускают реакционную смесь через контактную камеру с осажденным на носителе никелем. Каталитическое действие никеля позволяет гладко осуществлять димеризацию олефинов. В этом случае реакцию роста цепи проводят в присутствии никеля, который приводит к [c.77]

    Эффективными антиокислителями зарекомендовали себя М-ал-килированные ароматические амины, которые получают каталитическим действием на ароматический амин альдегида или кетона [пат. ФРГ 1179947] или ненасыщенного соединения [пат. США 3600413]. Предложен способ получения Н-алкил-и-анизидинов алкилированием -анизидина различными спиртами в присутствии катализатора никеля Ренея или олефинами в присутствии анилида алюминия [пат. США 3923892]. Тем же способом получают Н-ал-килпроизводные п-феиилендиамина. [c.173]


    Металлический никель (в диспергированном виде или на носителях) значительно ускоряет вытеснение алкильных групп, что дает возможность проводить полимеризацию иным образом — в две стадии. Вначале при 100—120 °С наращивают цепь до определенной средней длины, а затем добавляют никель или пропускают реакционную смесь через контактную камеру с осажденным на носителе никелем. Каталитическое действие никеля позволяет гладко осуществлять димеризацию олефинов. В этом случае реакцию роста цепи проводят в присутствии никеля, который приводит к немедленному вытеснению алкильных групп исходным олефином. Таким путем из этилена с высоким выходом образуется бутен-1  [c.71]

    Каталитический крекинг-процесс отличается от термического тем, что пары углеводородов перерабатываемого сырья пропускают над катализатором, т. е. веществом, которое ускоряет и направляет ход реакций, при этом получаются продукты более качественные, чем при термическом крекинге. В настоящее время в качестве катализатора наиболее широко применяются алюмосиликаты, которые содержат около 70—80% 5102, 10—18% А Оз. Для повышения каталитического действия алюмосиликатов в них добавляют также окислы железа, никеля, меди и других металлов. [c.8]

    По этим авторам каталитическое действие восстановленного никеля на метан весьма, слабо проявляется при 350°, но уже при 390° реакция заметно осложняется значительным отложением углерода. [c.333]

    Применение некоторых катализаторов значительно ускоряет процесс сернокислотной гидратации. Для этой цели используются соли железа, кобальта, никеля, меди, платины, серебра [41, 42], а также соединения висмута [43, 44]. Сульфат серебра [45, 46] и соли меди [47—49] сильно ускоряют гидролиз сложных эфиров серной кпслоты. Рекомендуется применять в качестве катализаторов галогениды бора пли бораты в соединении с сульфатами никеля и других тяжелых металлов [50]. Необходимые для этого реакционные условия определены Поповым [51]. При высоком давлении и высокой температуре каталитическое действие проявляют сульфаты органических оснований, например изопроииламина, анилина, наф-ти.талшна, хинолнна [52], а также сульфаты и галогениды цинка, магния, бериллия [53] и алюминия [54]. Соли алюминия обладают каталитическим действием при высоком давлении и низких температурах в водном растворе. Наконец, следует упомянуть еще кремневую или борвольфрамовую кислоту и их соли [55], однако процессы с их участием протекают прн 200—300 °С под давлением уже, в газообразной фа.зе. [c.60]

    На скорость окисления масел в двигателях существенное влияние оказывают металлы, из которых изготовлены детали двигателя сталь, медь, свинец, цинк, олово, алюминий, кадмий, серебро, никель, хром и др. Некоторые из этих металлов оказывают явное каталитическое действие на процесс окисления масел, другие действуют слабо. Сильнейшими катализаторами окисления являются железо и медь, а также их соединения. Глубокому окислению способствуют и продукты первичного окисления компонентов масла. Они тоже могут взаимодействовать с металлами, давая вещества, в свою очередь ускоряющие процессы окисления. Было, например, установлено, что каталитической активностью обладают соли нафтеновых кислот, особенно нафтенаты свинца и меди. [c.14]

    При конструировании змеевика большое значение имеет правильный выбор материалов. Материал стенок реактора оказывает влияние на процесс пиролиза, причем олефины более чувствительны к каталитическому действию металлов, чем парафины. В присутствии никеля, кобальта и железа разложение сырья на углерод н водород усиливается. Наиболее активным металлом является никель. При наличии хрома в составе никелевого сплава каталитическое действие никеля снижается. [c.56]

    Нежелательное действие солей металлов переменной валентности можно подавить связыванием ионов металлов в виде недиссоциирующих или нерастворимых в полимере соединений, например образованием комплексных соединений металлов (медь, кобальт, никель) с некоторыми кислотами (дитиокарбаминовая и некоторые другие). Это позволяет вывести ион металла из сферы реакции и ослабить или подавить его вредное каталитическое действие на радикальный распад пероксидных соединений в полимере (рис. 18.8). Но это только часть общей задачи защиты полимеров от окислительной деструкции. Вторая, не менее, а часто более важная задача состоит в подавлении развития цепного процесса окисления с целью существенного удлинения индукционного периода. [c.266]

    Формула катализатора для риформинга нафты усложняется большой склонностью высших углеводородов к образованию углерода. Термодинамика реакций образования углерода обсуждалась на стр. 89—91. Углерод может образовываться различными путями — либо гомогенно при крекинге углеводородов, либо каталитически на активной поверхности никеля или на носителе катализатора. Каталитическое действие на крекинг углеводородов таких кислотных окислов, как алюмосиликаты, хорошо известно в нефтяной промышленности. Подобный эффект получается для амфотерных окислов, а также для некоторых компонентов, обычно обладающих основными свойствами, но при высоких температурах и парциальных давлениях, пара приобретающих некоторые кислотные характеристики. [c.99]


    В рассматриваемом аспекте для химизма, механизма, кинетики и термодинамики процесса карбонизации большое значение имеет присутствие в нефтяном сырье различных функциональных групп, содержащих кислород, серу и азот, и их термическая стабильность (химическая активность), металлов, их соединений и комплексов, обладающих каталитическим действием на реакции распада, дегидрирования, полимеризации, конденсации и другие. С этой точки зрения,особо следует отметить такие металлы, как ванадий, никель, хром, молибден, кобальт, алюминий, железо и другие. [c.11]

    Интенсивность действия каталитического яда тем выше, чем больше энергия его химического взаимодействия с активным компонентом катализатора, чем труднее его химическая регенерация или десорбция яда. Обычно дезактивирующая способность каталитического яда растет с увеличением его атомной или молекулярной массы. Так, отравляемость гидрирующих катализаторов никель — оксид хрома соединениями серы, селена и теллура растет от S к Те. С другой стороны, отравление металлических (Pt, Ni) катализаторов органическими соединениями серы (меркаптаны, сульфиды) растет с увеличением длины цеии органического радикала фиксированная на активном участке поверхности атомом серы молекула яда вращающимся вокруг него по поверхности алифатическим радикалом экранирует и ближайшие участки поверхности, препятствуя адсорбции на них компонентов реакции. Частичное отравление энергетически неоднородной поверхности может в случае сложных реакций влиять на течение лишь отдельных стадий, чем можно регулировать селективность каталитического действия и повышать выход целевого промежуточного продукта торможением последних (или параллельных) стадий процесса. Практически важным случаем является дезактивация катализаторов побочными продуктами реакции, отлагающимися на поверхности, например закоксовывание катализаторов нефтехимических про- [c.305]

    При окислительно-восстановительном (электронном) катализе катализаторами служат проводники электрического тока — металлы и полупроводники (главным образом оксиды металлов). Опытные данные показывают, что наибольшей каталитической активностью и разнообразием каталитического действия обладают металлы больших периодов системы элементов Д. И. Менделеева. Это в основном металлы I, Ч, УП и УП1 групп медь, серебро, хром, молибден, вольфрам, уран, железо, кобальт, никель, платина, палладий и др. Все эти металлы являются переходными элементами с незавершенной -оболочкой и обладают рядом свойств, [c.224]

    Рекомбинация аллильных остатков аллилгалогенидов. Холл и Херли [Ij подтвердили данные патента о возможности проведения реакции рекомбинации аллильных остатков аллилгалогенидов с порошком Ж. в качестве катализатора при этом очень важна природа растворителя. Найдено, что наиболее эффективен диполярный апротонный растворитель ДМФА. Добавки неорганических бромидов или иодидов оказывают заметное каталитическое действие. В лучшем случае можно получить 90%-нып выход несопряженных диенов. В последнее время для этой реакции применяли карбонил никеля (II, 436—439 V 328—331), однако он очень токсичен и легко воспламеняется. [c.124]

    Наиболее подробно изучено каталитическое действие я-аллильных комплексов никеля. Их стереоспецифичность определяется природой галогена, связанного с никелем иодиды приводят к транс-структурам, а хлориды способствуют образованию цис-звеньев [48]. Активность п-аллилникельгалогенидов резко возрастает при введении в систему неорганических или органических электроноакцепторов [49, 50]. Катализаторы, образующиеся при взаимодействии п-аллильных комплексов никеля с такими соединениями, как галогензамещенные хиноны, альдегиды, кетоны, кислоты и их соли, обладают высокой каталитической активностью [c.183]

    Соединения таких металлов, как железо, никель и ванадий, присутствующие в нефтяных месторождениях, отлагаются на поверхности катализатора. Их каталитическое действие проявляется как при крекинге, так и при регенерации. В процессе крекинга эти соединения способствуют образованию кокса и водорода, не проявляя каталитической активности в отнощении образования бензина. При регенерации соединения названных металлов катализируют реакцию сгорания до СО2, а не до СО, что приводит к нежелательным тепловым эффектам. Методы удаления этих примесей из катализаторов вполне доступны, но не получили широкого распространения. Если эффект отравления, обусловленный присутствием железа, принять за единицу, то воздействие примесей ванадия и никеля оценивается соответственно величинами 4 и 14. Тогда, вьфазив концентрацию примесей в частях на миллион, суммарный эффект их действия можно представить следующим образом  [c.53]

    Благодаря случайному открытию, что следы никеля исключительно катализируют реакцию витеснс нич, был доказан каталитический характер этой реакции. По )тому возе1Икло предположение, что построение высокомо-лекулярщах углеводородов из этилена в ре.эультате реакции роста предот-врап ,ается еще и другим катализатором, кроме никеля. Может быть, при исключении всех каталитически действующих метал.иов или соединений мо/Кно будет достигнуть полимеризации этилеиа в высокомолекулярные соединения. [c.581]

    Химическому разложению КМПО4 способствуют также повы-щенная температура и наличие в растворе электролита суспензии двуокиси марганца, которая оказывает каталитическое действие на процесс разложения КМПО4. Повышение анодной плотности тока снижает выход по току, поскольку при этом потенциал выделения О2 увеличивается в значительно меньшей степени, чем потенциал окисления МпО . Так, при плотностях тока 50, 125 и 200 А/дм выход КМПО4 на анодах из никеля соответственно составляет 88,9, 69,6 и 53,5%. Поэтому процесс обычно ведут при анодных плотностях тока около 70 А/м . [c.204]

    Катализаторы обладают специфическим действием. Вещество, значительно ускоряющее одну реакцию, часто оказывается совершенно неэффективным для другой. В то же время для данной реакции может существовать целый набор катализаторов. Так, термическое разложение хлората калия ускоряется не только в присутствии МпОг, но и некоторых других оксидов (РегОз, СггОз). Существуют катализаторы, обладающие так называемой групповой специфичностью. Она проявляется в том, что при помощи их ускоряется целая группа однотипных реакций. Например, никель Ренея (мелкодисперсный никель с сильно развитой поверхностью) служит специфическим катализатором реакций гидрирования, а иентоксид ванадия ускоряет многие реакции окисления (ЗОг, N1 3 и т. д.). Многие катализаторы, в частности ферменты, обладают сугубо индивидуальным каталитическим действием. Такие катализаторы называются индивидуально-специфическими. По образному выражению Э. Фишера, реакцию, катализируемую ферментом, можно сравнить с замком, а сам фермент — с ключом. Как не каждый ключ может открыть замок, так не каждый фермент способен ускорить реакцию в данном направлении. Например, один фермент способствует сбраживанию сахара до спирта и диоксида углерода, другой — до молочной кислоты. [c.234]

    Подобно другим карбонильным реакциям, это превращение тоже катализируется кислотами. Поэтому благородные металлы оказывают наибольшее каталитическое действие в кислой среде, а в нейтральной или щелочной среде менее активны. При использовании скелетного никеля, напротив, сильноосновной катализатор дает наилучшие результаты (например, катализатор Урусибары). [c.114]

    Скорость восстановления никеля мало зависит от концентрации гипофосфита натрия при сохранении постоянной концентрации всех остальных компонентов. В процессе образования никелевого покрытия протекает несколько реакций. Реакция взаимодействия гипофосфита натрия с водой представляется как присоединение иона 0Н к месту разрыва связи Р = Н в молекуле гипофосфита натрия. Протеканию этой реакции способствует каталитическое действие поверхности никеля. Происходит окисление гипофосфита с образованием электронов, которые через металл восстанавлиЕ1ают водород  [c.336]

    Метан способен полимеризоваться в тяжелые углеводороды при каталитическом действии силикатов, а также окислов железа и никеля, содержащихся в горных породах. Это подтверждается экспериментами, выполненными на кафедре МГРИ (Московский геологоразведочный институт) по синтезу углеводородов из окиси и двуокиси углерода и водорода при различных условиях в присутствии пород-катализаторов при этом были получены метан и более тяжелые углеводороды вплоть до жидкой нефти. [c.14]

    Важный вывод о механизме каталитического синтеза углеводородов изСО и Hj на металлических катализаторах был сделан с помощью индикации радиоуглеродом. Предполагалось, что каталитическое действие металлов, например никеля. Обусловлено промежуточным образованием карбидов (Ni ). Последующее образование углеводородов связывалось с разложением карбидов образующейся в результате промежуточных реакций водой. Однако выяснилось, что если вести реакцию на карбиде, меченном то в подавляющем большинстве случаев радиоактивность не переходит в образующиеся в результате каталитического процесса углеводороды (предварительно были получены доказательства, что карбид и углеводороды в условиях каталитической реакции не обмениваются углеродом), что исключает механизм, связанный с разложением карбида. [c.189]

    В отличие от опыта 1, на катализаторах, содержащих смесь силиката никеля и двуокиси кремния (опыты 2 и 3), достигнуто практически равновесное превращение метана, что свидетельствует о высокой активности катализатора. Такое сильное каталитическое действие может оказывать только свободный никель, присутствие которого объяснимо реакцией протекания термического распада силиката никеля в условиях конверсии метана. Для подтверждения этой интерпретации наших данных был проведен рентгенофазовый анализ образцов силиката никеля и его смесей с двуокисью кремния после выгрузки их из конверторов по окончанию процесса конверсии. Расчет рентгенограмм всех образцов показал наличие в них только одной фазы металлического никеля и полное отсутствие силиката никеля. На рентгенограммах образцов линии, характеризующие SiOj, не обнаружены. По-видимому, двуокись кремния, как введенная в состав смеси, так и полученная в результате разложения силиката никеля, не образует кристаллической фазы, а находится в рентгеноаморфной форме. [c.139]

    Образование молибдатов кальция, железа, меди и др., устойчивых в условиях обжига концентрата, а также МоОг подтверждено рентгеновским и фазовым химическим анализом огарков. Образованию SOj содействует каталитическое действие окислов тяжелых металлов. Реак ции so, с окислами металлов дают сульфаты. Из образующихся сульфатов только aSOi вполне устойчив при температуре обжига (разлагается выше 1000°). Молибдаты кальция, свинца и железа (III), не растворимые в воде и растворах аммиака, нежелательны при переработке огарков аммиачным способом (см. ниже). Молибдаты меди и свинца образуют с МоОз низкоплавкие эвтектики, при застывании дающие плотные корочки, которые цементируют частицы огарка и недообож-женного концентрата, ухудшая, таким образом, условия доступа кислорода к частицам MoS г- Молибдаты меди, никеля, железа (II) и цинка хотя и устойчивы при температурах обжига, но разлагаются в растворах аммиака и соды (реакции см. ниже). [c.190]

    Разложение гипохлорита в растворе в присутствии каталитически действующих гидроокисей кобальта, никеля, железа и меди подавляется добавкой солей свинца, хрома, мышьяка и некоторых других элементов. Гидроокись железа теряет свои каталитические свойства в присутствии в растворе избытка твердой (нерастворен-ной) гидроокиси кальция. Заслуживает внимания интенсивное ингибиторное действие активных препаратов двуокиси кремния на разложение растворов гипохлорита кальция, содержащих гидроокись железа [c.684]

    Баг, Егупов и Волокитин [142] сообщили о почти стехио-метрическом восстановлении нитробензола до анилина при каталитическом действии КУСОЧКОВ едкого натра, активированного никелем и алюминием вместе с другими металлами. [c.427]

    Но присоединение хлористого водорода. можно ухкорить, применяя каталитически действующие вещества и более высокую темперауфу или даапение. Так например применяя в качестве катализатора хлористые соли железа, кобальта, никеля или алюминия, из этилена и хлороводорода при 80" с выходом 43% получают хлористый этил. При пропускании газообразного хлора при повышенной температуфе эти катализаторы могут быть снова активированы [c.338]

    Далее установлено, что для каталитического действия иикеля Ренея важно высокое содержание в нем водорода [14— 17]. Если из порошка Ренея, содержащего от 0,5 до 1,2 атома водорода на 1 атом никеля, удалить водород, то катализатор теряет свою активность. [c.153]


Смотреть страницы где упоминается термин Никель каталитическое действие: [c.101]    [c.218]    [c.235]    [c.320]    [c.94]    [c.230]    [c.172]    [c.545]    [c.208]    [c.232]    [c.545]    [c.213]    [c.208]   
Основы полярографии (1965) -- [ c.396 ]




ПОИСК







© 2025 chem21.info Реклама на сайте