Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флавопротеин, переносящий электроны

    Микросомальные ферментные системы. Реакции микросомального окисления катализируются НАДФН- и НАДН-зависимыми ферментными системами в присутствии кислорода. НАДФН-зависимый флавопротеин переносит электрон от восстановленного НАДФН на терминальный фермент — цитохром Р-450, восстанавливая железо гема последнего. Кроме того, в монооксигеназных реакциях принимает участие НАДН-зависимый ферментный комплекс, состоящий из НАДН-зависимого флавопротеина и цитохрома Ь . В этом случае электрон переносится на кислород и активирует его  [c.511]


    Природа остроумно решила эту проблему ценой дополнительных энергетических затрат в тех случаях, когда место включения электронов с окисляемого субстрата находится ниже энергетического уровня, на котором образуется НАД Н2, работает система обратного переноса электронов, т.е. лифт , поднимающий электроны по дыхательной цепочке в сторону более отрицательного потенциала, необходимого для восстановления молекул НАД" . Процесс обратного транспорта электронов требует энергии, и часть молекул АТФ, получаемых за счет окислительного фосфорилирования на конечном этапе дыхательной цепи, тратится для образования восстановителя. Окисление соединений с положительным окислительно-восстановительным потенциалом происходит, таким образом, без участия флавопротеинов и хинонов. Эти переносчики функционируют только в процессе обратного переноса электронов. Следовательно, у таких эубактерий дыхательная цепь работает в двух направлениях осуществляет транспорт электронов для получения энергии в соответствии с термодинамическим потенциалом и перенос электронов против термодинамического потенциала, идущий с затратой энергии, чтобы синтезировать восстановитель (см. рис. 97). [c.370]

    Изучение у прокариот электронтранспортных цепей, функционирующих в процессах дыхания и фотосинтеза I и II типов, выявило принципиальное сходство между ними. В обеих системах электронного транспорта есть флавопротеины, хиноны, цитохромы и белки, содержащие негемовое железо, позволяющие переносить электроны вниз по термодинамической лестнице. Таким образом, по существу обе электронтранспортные цепи являются окислительными. Разнообразие в их организации обнаружено при более детальном изучении и выражается как в широком наборе доноров и акцепторов электронов, так и в конкретной организации самих цепей химическом строении переносчиков, принадлежащих к одному типу, их наборе, расположении и т.д. [c.97]

Рис. 5.7. Связь общего пути катаболизма с цепью переноса электронов. ФП — флавопротеины. Рис. 5.7. Связь <a href="/info/1580790">общего пути катаболизма</a> с <a href="/info/511072">цепью переноса электронов</a>. ФП — флавопротеины.
    Дыхательные электронтранспортные цепи состоят из большого числа локализованных в мембране переносчиков, с помощью которых электроны передаются или вместе с протонами, т.е. в виде атомов водорода, или без них. Компонентами цепи, локализованными в мембране, являются переносчики белковой (флавопротеины, Ре8-белки, цитохромы) или небелковой (хиноны) природы. Флавопротеины и хиноны осуществляют перенос атомов водорода, а Ре5-белки и цитохромы — электронов. [c.360]


    Гидрогеназы, имеющие различную локализацию, вероятно, выполняют в клетке разные функции. Связанный с мембранами фермент не способен восстанавливать НАД" , передает электроны непосредственно в дыхательную цепь на уровне флавопротеинов, хинонов или цитохрома Ь и, таким образом, имеет отношение только к энергетическим процессам. Растворимая гидрогеназа переносит электроны на молекулы НАД" , которые участвуют далее в различных биосинтетических реакциях. [c.386]

    Компоненты дыхательной цепи погружены в двойной липидный слой. Речь идет о большом числе ферментов, коферментов и простетических групп, различных дегидрогеназ и транспортных систем, участвующих в переносе электронов и водорода. Белковые компоненты могут быть выделены из мембраны. Важнейшие из компонентов, участвующих в окислении водорода,-это флавопротеины, железосерные белки, хиноны и цитохромы. [c.236]

    Флавопротеины ФАД (флавинадениндинуклеотид см. разд. 9.3.5) Компонент цепи переноса электронов при дыхании [c.131]

    ФМН и ФАД являются простетическими группами сложных белков флавопротеинов, катализирующих многочисленные реакции окисления веществ в клетках перенос электронов и протонов в дыхательной цепи, окисление пирувата, жирных кислот, биогенных аминов, альдегидов и др. (см. раздел II). ФМН и ФАД, восстанавливаясь, присоединяют от субстрата два электрона к атомам углерода изоаллоксазинового фрагмента, изменяя при этом их степени окисления. Одновременно два протона, полу- [c.147]

    В результате переноса электронов по дыхательной цепи от восстановленного флавопротеина и NAD синтезируется по 5 богатых энергией фосфатных связей (см. гл. 13) на каждые 7 (из 8) молекул ацетил-СоА, образующихся при Р-окислении пальмитиновой кислоты (7 X 5 = 35). Всего образуется 8 молекул ацетил-СоА, и каждая из них, проходя через цикл лимонной кислоты, обеспечивает синтез 12 богатых энергией связей. Всего в расчете на молекулу пальмитата по этому пути генерируется 8 X 12 = 96 богатых энергией фосфатных связей. Если учесть две связи, необходимые для активации [c.227]

    Цитохромная система. Среди оксидаз очень важную роль играют железосодержащие ферменты и переносчики, относящиеся к цитохромной системе. В псе входят цитохромы и цитохромоксидаза. Включаясь в определенной последовательности в процесс переноса электронов, они передают пх от флавопротеинов на молекулярный кислород. [c.134]

    Интересная. проблема — перенос электронов вдоль мембран. Этот процесс локализован, по-видимому, в эндоплазматическом ретикулуме и внешней митохондриальной мембране, где он обеспечивается НАДН-цитохром Ьъ-редуктазой (флавопротеином Фпб) и цитохромом Ьъ. Названная система найдена в печени, почках, мозге и некоторых других тканях. Как Фпб, так и цитохром Ьъ состоят из двух неравных частей большей гидрофильной, содержащей флавин или гем, и меньшей гидрофобной, требующейся для заякоривания белка в мембране. Подобно челноку, Фпб и цитохром Ьъ могут перемещаться по поверхности мембраны, встречая сравнительно небольшое сопротивление. [c.207]

    Изопреноидный хвост обусловливает высокую неполярность Q, которая способствует его быстрой диффузии в углеводородной фазе внутренней митохондриальной мембраны. Кофермент Q-единственный переносчик электронов в дыхательной цепи, который не связан прочно с белком и не присоединен к нему ковалентно. Кофермент Q действительно служит высокомобильным переносчиком электронов между флавопротеинами и цитохромами цепи переноса электронов. [c.75]

    Основная функция флавопротеинов—перенос электронов (атомов И) от восстановленных пиридинпротеинов к другим компонентам окислительновосстановительной цепи, т.е. ФП в большинстве случаев являются вторичными дегидрогеназами. Однако некоторые флавопротеины, особенно с ФАД в качестве кофермента, могут непосредственно снимать атом И с субстрата. [c.120]

    Помимо трех ароматических а-аминокислот шикиматный путь дает возможность синтезировать другие биологически активные метаболиты, например изопреноидные хиноны, которые участвуют в транспорте электронов во многих организмах. Главная функция этих жирорастворимых хинонов, которые, по-видимому, определенным образом ориентированы в мультиферментных комплексах, участвующих в процессах дыхания у некоторых организмов, состоит, вероятно, в переносе электронов между различными дыхательными коферментами. Например, убихиноны, скорее всего, являются посредниками между флавопротеинами и цитохромами в дыхательной цепи (см. разд. 24.3.2.3). [c.698]

    Биологическая роль. Рибофлавин входит в состав флавиновых коферментов, в частности ФМН и ФАД , являющихся в свою очередь простетическими группами ферментов ряда других сложных белков —флавопротеинов. Некоторые флавопротеины в дополнение к ФМН или ФАД содержат еще прочно связанные неорганические ионы, в частности железо или молибден, наделенные способностью катализировать транспорт электронов. Различают 2 типа химических реакций, катализируемых этими ферментами. К первому относятся реакции, в которых фермент осуществляет прямое окисление с участием кислорода, т.е. дегидрирование (отщепление электронов и протонов) исходного субстрата или промежуточного метаболита. К ферментам этой группы относятся оксидазы Ь- и О-аминокислот, глициноксидаза, альдегидоксидаза, ксантиноксидаза и др. Вторая группа реакций, катализируемых флавопротеинами, характеризуется переносом электронов и протонов не от исходного субстрата, а от восстановленных пиридиновых коферментов. Ферменты этой группы играют главную роль в биологическом окислении. В каталитическом цикле изоаллоксазиновый остаток ФАД или ФМН подвергается обратимому восстановлению с присоединением электронов и атомов водорода к и ФМН и ФАД прочно связываются с белковым компонентом, иногда даже ковалентно, как, например, в молекуле сукцинатдегидрогеназы. [c.224]


    Некоторые авторы относят молочнокислые бактерии рода La toba illus к микроаэрофилам на том основании, что в их клетках содержатся флавопротеины, катализирующие перенос электронов с НАД Иг на Oj. Однако этот процесс не связан с получением клеткой энергии. См. также с. 340—341. [c.128]

    Отсутствие у пурпурных и зеленых нитчатых бактерий светозависимого восстановления НАД или ферредоксина связано с тем, что электроны, отрывающиеся от молекулы хлорофилла, в результате фотохимической реакции акцептируются на хиноновых соединениях, окислительно-восстановительный потенциал которых недостаточно отрицателен для непосредственного восстановления НАД или ферредоксина (см. табл. 11). В этих группах фотосинтезирующих эубактерий восстановитель образуется в результате темнового переноса электронов от экзогенных доноров (сульфид, тиосульфат, органические соединения) против электрохимического градиента — обратного переноса электронов (рис. 75, А). Последний осуществляется с участием электронтранепортной цепи, в состав которой входят флавопротеины, за счет энергии, генерируемой в процессе циклического электронного транспорта. [c.284]

    Оз из среды, но не имеют отношения к получению клеткой энергии. Восстановление О3, при котором в роли оксидаз, т.е. ферментов, непосредственно осуществляющих перенос электронов на молекулярный кислород, выступают флавопротеины, получило название флавинового дыхания . В основном при флавиновом дыхании осуществляется двухэлектронный перенос на О3. Так, у молочнокислых бактерий рода Strepto o us 90 % поглощенного Оз восстанавливается до Н3О3. [c.351]

    Негеминовое железо частично связано с флавопротеинами, однако это железо обусловливает перенос электронов за счет попеременного окисления-восстановления. Кофермент Q, имеющийся во всех митохондриях, представляет собой замешенный бензохинон, переносящий электроны также за счет попеременного окисления-восстановления. [c.183]

    Целиком на явлениях хелатирования основано использование в биохимической практике ферментных ядов при решении ряда вопросов и в том числе изучении механизма активирующего действия металлов в каталитических реакциях. Ингибирующее действие последних во многих случаях связано с блокированием металла-активатора фермента вследствие образования неактивного комплекса. Следуя этим путем, удалось выяснить природу. металлов, входящих в состав разнообразных групп ферментов, механизм их действия. Так, например, были идентифицированы железосодержащие флавопротеины и доказана в настоящее время роль негеминового железа в системе переноса электронов (Грин и др., 1962). Подобных примеров можно привести очень много. [c.280]

    Интересно отметить, что PQQ-дегидрогеназы и оксидазы по механизму действия аналогичны флавопротеинам, катализирующим перенос 2 электронов и протонов, возможно, непосредственно на убихинон. PQQ-декарбо-ксилазы, напротив, аналогичны по механизму действия пиридоксалевым ферментам, поскольку обе системы содержат карбонильную группу. На примере трехмерной структуры одного из хинопротеинов —метиламино-ксидазы—получены данные, свидетельствующие о том, что коферментом ее является не свободный PQQ, а его предшественник Pro-PQQ (содержит остатки PQQ, индола и глутаминовой кислоты), ковалентно связанный с белковой молекулой. [c.244]

    Участие в дыхательном электронном транспорте принимают белки, содержащие железосероцентры (см. рис. 58). Они входят в состав некоторых флавопротеинов, например сукцинат и НАД(Ф) Нз-дегидрогеназ, или же служат в качестве единственных простетических групп белков. Дыхательные цепи содержат больщое число Ре8-центров. В митохондриальной электронтранс-портной цепи функционирует, вероятно, около дюжины таких белков. В зависимости от строения Ре8-центры могут осуществлять одновременный перенос 1 или 2 электронов, что связано с изменением валентности атомов железа. [c.362]

    Основное же количество энергии тионовые бактерии получают в результате переноса образующихся при окислении восстановленной серы электронов, поступающих в дыхательную цепь на уровне цитохрома а (см. рис. 97). Дыхательная цепь тионовых бактерий содержит все типы переносчиков, характерных для аэробных хемогетеротрофов. У тионовых бактерий обнаружены флавопротеины, убихиноны, Ре8-белки, цитохромы типа Ь, с, цитохромоксидазы о, d, а + [c.372]

    Образующиеся при окислении сукцината, ацил-КоА и других субстратов электроны переносятся на убихинон комплексом II или другой митохондриальной дегидрогеназой через связанный с ферментом ФАДНз или флавопротеин. При этом окисленная форма кофермента Q восстанавливается в ароматический убигидрохинон. [c.174]

    Каталитическое действие флавопротеинов основано на способности простетических групп этих ферментов принимать электроны и переносить их на другие вещества. Восстановленная форма простетической группы, получившая название лейкофла-вина, является бесцветным соединением, однако, отдавая два электрона (т. е. окисляясь), она вновь приобретает желтую окраску. СН2ОН [c.302]

    Далее два электрона и два протона переносятся от восстановленного (НАДН + Н ) кФМН, входящему в состав флавопротеина (ФлПр), встроенного в митохондриальную мембрану и пронизывающего ее от внешней до внутренней поверхности (рис. 10.3)  [c.322]


Смотреть страницы где упоминается термин Флавопротеин, переносящий электроны: [c.400]    [c.599]    [c.513]    [c.402]    [c.91]    [c.518]    [c.697]    [c.160]    [c.254]    [c.71]    [c.117]    [c.228]    [c.69]    [c.80]    [c.594]    [c.557]    [c.234]    [c.248]    [c.123]    [c.80]    [c.172]    [c.137]   
Биологическая химия (2002) -- [ c.358 ]




ПОИСК





Смотрите так же термины и статьи:

Флавопротеины



© 2025 chem21.info Реклама на сайте