Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Текучесть псевдоожиженного сло

    Под текучестью псевдоожиженного слоя фд (т) понимают отношение 2111 (в Па -с )  [c.241]

    На основе принципа текучести (псевдоожиженное состояние) осуществлен непрерывный процесс каталитического крекинга с порошкообразным или микросферическим катализатором. Смесь нефтяных и водяных паров со свежим или регенерированным катализатором поступает в реактор, где проис- [c.43]


    Таким образом, можно считать, что для обеспечения высокой селективности и производительности катализатора следует в процессе работы часть отработанной катализаторной пыли заменять свежей.в количестве О, —1,0 кг на 1000 кг переработанного нафталина. Этот расход можно уменьшить за счет повышения селективности и производительности катализатора, а также в значительной мере—путем снижения скорости истирания катализатора, т. е. в результате увеличения его прочности. Удалять нежелательные фракции катализатора так же, как и догружать новые порции, можно без остановки системы. Текучесть псевдоожиженного катализатора позволяет оперировать с ним почти так же просто, как и с жидкостью. [c.52]

    Благодаря высокой текучести псевдоожиженный слой, как и жидкость, принимает форму сосуда, в котором он находится.. Это облегчает транспортирование катализатора из одного аппарата в другой, например из контактного аппарата в регенератор и обратно. В связи с этим появляется возможность создания агрегатов непрерывного действия для процессов, проводимых в присутствии таких катализаторов, которые легко отравляются и требуют частой регенерации. [c.59]

    Транспортировка. Текучесть псевдоожиженных твердых частиц часто бывает столь же велика, как и у жидкостей. Именно это свойство было эффективно использовано для транспортировки мелкодисперсных материалов. [c.37]

    ВЯЗКОСТЬ и ТЕКУЧЕСТЬ ПСЕВДООЖИЖЕННОГО СЛОЯ [c.95]

    Текучесть псевдоожиженного слоя позволяет легко осуществить транспорт катализатора и дает возможность непрерывного вывода отработанного катализатора и непрерывной подачи регенерированного катализатора в реакционный аппарат. Схема реакционного агрегата в этом случае аналогична рассмотренной выше схеме агрегата с движущимся слоем и состоит из реакционного аппарата, регенератора и системы транспортных устройств. [c.423]

    Итак, зная свойства твердых частиц и располагая уравнениями для расчета гидравлического сопротивления, можно вычислить скорость начала псевдоожижения и хотя бы в первом приближении — размер пузыря, возникающего над отверстием распределительной решетки. Можно также рассчитать скорость подъема пузыря, а значит, и предполагаемые размеры областей нисходящего и восходящего движения масс твердого материала. Как только полость отделится от отверстия решетки, ее траектория будет определяться относительной локальной текучестью в слое последняя может беспорядочно изменяться по объему хорошо перемешанного слоя. [c.32]


    Известно много методов, пригодных для определения реологических свойств жидкости, но только немногие из них дают истинную величину ее текучести. Это методы — капиллярный, падающего шара, Куэтта и крутильного маятника. В настоящее время уравнение течений, исходя из диаграммы сдвига, может быть написано только применительно к двум методам капиллярному и Куэтта Капиллярный вискозиметр нельзя использовать в псевдоожиженных системах из-за неблагоприятного пристеночного эффекта в капиллярах. Вискозиметр Куэтта может быть использован при соблюдении ряда важных условий (см. ниже). В случае вискозиметров (с падающим шаром и крутильного) не удается по диаграмме сдвига составить общее уравнение течения (известны лишь частные решения ). Добавим, что в вискозиметрах с падающим шаром очень велик пристеночный эффект. Кроме того, следует учитывать значительное нарушение структуры псевдоожиженного слоя вблизи лобовой поверхности движущегося шара .  [c.229]

    Псевдоожиженную плотную фазу можно рассматривать как невязкую капельную жидкость, постулируя, что для каждой частицы, сила трения газового потока в любой момент времени уравновешивается силами тяжести и инерции (таким образом, из рассмотрения исключаются соприкосновение частиц и касательные напряжения ). Если по каким-либо причинам псевдоожижение нарушается, плотную фазу в аспекте ее текучести следует рассматривать как механическую систему отдельных твердых частиц. Свойства этой системы следует выражать в зависимости от таких характеристик текучести, как когезионный фактор, угол внутреннего трения и срезающие усилия. [c.567]

    Если смешивать газ, пар, воздух или нефтяные пары с пылевидным катализатором, то эта смесь приобретает текучесть , т. е. переходит в псевдоожиженное состояние и ней можно обращаться как с жидкостью. [c.43]

    Реакторы для газофазных процессов с кипящим слоем катализатора. Явление псевдоожижения (флюидизации) заключается в том, что при продувании газа снизу через слой мелкодисперсных твердых частиц все они приходят в беспорядочное движение, в результате чего слой расширяется, принимает вид кипящей жидкости и приобретает свойство текучести. Переход слоя в псевдоожиженное состояние происходит скачком при некоторой линейной скорости потока, называемой критической скоростью. [c.269]

    При небольшой скорости газа слой твердых частиц, через который проходит газ, неподвижен (рис. 6-23, а) и движение газа характеризуется закономерностями, рассмотренными в предыдущем, 12 разделе данной главы.увеличением скорости газа высота слоя твердых частиц начинает возрастать, и когда скорость газа достигает критической величины, при которой сопротивление СЛОЯ становится равным его весу, слой твердых частиц приобретает текучесть и переходит в псевдоожиженное состоя- [c.179]

    Во взвешенном слое вследствие некоторой неравномерности скорости потока в различных сечениях слоя частицы интенсивно и хаотически перемешиваются внутри слоя. Взвешенный слой зернистого материала называют также кипящим или псевдоожиженным слоем. Подобное наименование возникло потому, что взвешенный слой зернистого материала обладает подвижностью, текучестью, вязкостью, способностью к отстаиванию более крупных частиц и другими особенностями, характерными для жидкостей, да и по внешнему виду он похож на кипящую жидкость. [c.462]

    Псевдоожижение — процесс приведения твердого зернистого материала в состояние, при котором его свойства приближаются к свойствам жидкости. Псевдоожиженные системы способны принимать форму аппарата (емкости), перемещаться по трубопроводу, выталкивать тела меньшей плотности, обладают свойствами вязкости и текучести. Режим псевдоожижения (режим кипящего слоя ) достигается при таком состоянии системы, когда вес зернистого материала, приходящийся на единицу площади сечения аппарата, уравновешивается силой гидравлического сопротивления слоя, то есть  [c.109]

    Основные преимущества метода псевдоожижения — низкое гидравлическое сопротивление при высокоразвитой поверхности контакта фаз, интенсивное выравнивание температуры и высокие коэффициенты внешней теплоотдачи, хорошая текучесть — были упомянуты во введении. Конструктивные особенности аппаратов кипящего слоя и их отдельных узлов должны обеспечить максимальное использование этих преимуществ и уменьшить влияние органических, присущих методу псевдоожижения, недостатков — уноса, обратного перемешивания, эрозии. - [c.207]

    Характерной особенностью порошков является их свойство переходить в псевдоожиженное состояние. Если порошок поместить в сосуде с пористым дном, то, пропуская через него снизу воздух с постепенно увеличивающейся скоростью, можно изменить свойства порошка. При малых скоростях воздух проходит через порошок, не изменяя его объема. При достижении определенной скорости воздуха слой порошка равномерно расширяется в результате того, что твердые частицы начинают интенсивно перемещаться относительно друг друга. По мере расширения слоя увеличивается его текучесть, т. е. порошок приближается по этому свойству к жидкости. С увеличением давления воздуха слой порошка становится похожим на кипящую жидкость, отчего и получил название кипящего слоя . Порошки в псевдоожижен-ном состоянии благодаря текучести легко перемещаются по наклонной плоскости, что используется в промышленных транспортных желобах. Некоторые порошки переходят в текучее состояние при осторожном пересыпании. Однако для ряда порошков пересыпание приводит к образованию крупных, но не очень прочных сферических частиц — гранул. Более прочные гранулы получаются при механическом уплотнении предварительно увлажненных порошков или порошков, в которые добавлены склеивающие вещества. [c.237]


    Важным свойством взвешенного слоя является его текучесть, подобная текучести жидкости. Так, применение КС катализатора при крекинге обеспечивает циркуляцию катализатора между контактным аппаратом и регенератором. Вследствие текучести КС его называют также ожиженным или псевдоожиженным. Циркуляционное движение зерен и газа внутри слоя дало ему еще одно название — вихревой слой. [c.9]

    Вследствие движения частиц слой приобретает текучесть, что оказывается существенным при перемещении материала из одного аппарата в другой и при поддержании постоянной высоты псевдоожиженного слоя. Отсутствие застойных газовых зон вблизи точек контакта частиц приводит к более полному раскрытию суммарной поверхности частиц при их псевдоожижении. [c.57]

    При очистке сточных вод приходится в ряде случаев вместо слоя неподвижных частиц пользоваться псевдоожиженным слоем катионита, в котором частицы ионообменной смолы более или менее интенсивно и беспорядочно двигаются, сталкиваясь друг с другом, и постоянно перемешиваются, а весь слой в целом приобретает свойство текучести и гидродинамически несколько напоминает жидкость, имеющую плотность больше воды и практически с водой не смешивающуюся. [c.141]

    Замена и регенерация катализатора легко осуществляется при применении аппаратов КС. Это является решающим преимуществом его в процессах крекинга, дегидрирования и в ряде других производств органической химии (см. главы VI и Vil), в которых требуется циркуляция катализатора с целью его регенерации, так как зерна его покрываются пленкой углеродистых соединений и теряют каталитическую активность в течение нескольких минут. В этом случае используется текучесть псевдоожиженного (кршящего) слоя, позволяющая непрерывно или периодически частично или полностью выпускать катализатор из слоя на регенерацию и вновь подавать его в реактор. Для такой работы, конечно, необходимо иметь высоко прочный катализатор, к которому не стремятся в случае неподвижного слоя. [c.104]

    При всем многообразии конструкций реакторов они представляют собой аппараты со свободно кипящими или секционированными с помощью провальных решеток слоями, к-рые снабжены теплообменньаш элементами последние имеют газораспределители в виде перфорир. плргг либо сопла, а также барботеры (рис. 4, г в данном случае через решетку и барботер вводятся разл. газовые потоки). Нередко газ поступает в реактор через боковые штуцера (рис. 4, д и е). Функционируют аппараты, в к-рые одновременно вводятся газообразные и жидкие реагенты. Способы улучшения контактирования фаз, а также воздействия на перемешивание в реакторах принципиально те же, что и для систем газ-жидкость в колонных аппаратах. Благодаря текучести псевдоожиженного слоя такие каталитич. процессы вторичной переработки нефти, как крекинг и риформинг, проводят в совмещенных блоках реактор регенератор (рис. 4, ж), что позволило перейти от полупериодич. произ-ва к непрерывному. Подобные комбинации быстро распространились и на иные реакционные и массообменные процессы (напр., системы реактор-адсорбер). [c.137]

    Подвижность ( текучесть ) псевдоожиженного слоя позволяет создать аппараты с непрерывным вводом свежей и отводом отработанной твердой фазы, используя при этом выносные устройства для теплообмена и регулирования температуры. В качестве примера можно привести современные аппараты для каталитического крекинга нефти в псевдоожиженном слое, где меладу реактором и регенератором циркулирует до 1 т свк катализатора с размерами частиц 30—100 мк. Следует отметить, что при диаметре этих аппаратов до 18 м и тепловой нагрузке 80—100 млн. ккал1ч перепад температур по высоте слоя обычно не превышает 3° С. [c.19]

    Псевдоожиженные еаетеми получили свое название из-за большого сходства е капельными жидкостями, выражающегося, в частности, в беспорядочном движении твердых чаетиц, непрерывным, изменением их взаимного расположения (подобно броуновскому движению молекул в жидкости) и в текучести. [c.475]

    Применение мелких зерен катализатора в кипящем слое дает возможность снизить внутрйдиффузионное торможение процесса [21, 23—25]. Вследствие текучести взвешенного (псевдоожиженного) слоя мелкозернистый катализатор можно легко выводить из контактного аппарата для регенерации и очистки от смол, не прекращая основной процесс, а потом возвращать в реакционную зону. Ката.ли-затор не только выполняет при этом свои прямые функции, но и служит теплоносителем. [c.220]

    В этих реакторах реакционная смесь проходит через слой катализатора снизу вверх с такой скоростью, чтобы зернистый материал перешел в состояние псевдоожижения. Это состояние характеризуется тем, что слой как целое расширяется, зерна теряют контакт между собой и приходят в интенсивное и хаотическое движение, не поквдая при этом границ слоя (за некоторыми исключениями). Образуются пузырьки газа, которые поднимаются через слой, п обш ая картина очень напоминает кипящую жидкость. Материал приобретает текучесть и способность передачи гидростатического давления в объеме подобно капельным жидкостям. [c.30]

    В последние десятилетия большое гсромышленное значение приобрели процессы взаимодействия газов и жидкостей с твердыми зернистыми материалами, при проведении которых твердые частицы приобретают подвижность друг относительно друга за счет обмена энергией с взвешивающим потоком. Такое состояние зернистого материала получило название псевдоожиженный слой вследствие внешнего сходства с поведением обычной капельной жидкости псев-дг)ожиженный слой принимает форму вмещающего его аппарата поверхность псевдооихи/кеиного слоя (без учета всплесков) горизонтальная. Одновременно обнаруживаются и другие свойства, аналогичные свойствам жидкости — текучесть, вязкость и поверхностное [c.109]

    Широкое внедрение техники псевдоожижения в промышленную практику обусловлено рядом важных преимуществ. Твердый зернистый материал в псевдоожиженном состоянии вследствие текучести можно перемещать по трубам, что позволяет многие периодические процессы осуществлять непрерывно. Особенно выгодно применение псевдоожиженного слоя для процессов, скорость которых определяется термическим или диффузиониым сопротивлениями в газовой фазе. Эти сопротивления в условиях псевдооя ия ения уменьшаются в десятки, а иногда и в сотни раз, а скорость процессов соответственно увеличивается. [c.110]

    ПСЕВДООЖИЖЕНИЕ, способ взаимодействия-потока газа или жидкости (ожижающий агеит) со слоем твердого зернистого материала, при к-ром твердые частицы, взвешенные в потоке, совершают пульсационные и вихревые движения, не покидая пределов слоя. Переход неподвижного слоя в псевдоожиженный происходит при такой скорости потока ш ожижающего агента, при к-рой устанавливается равповесие между силами трепия потока о твердые частицы и весом частиц (первая критич. скорость П.). В этом состоянии слой приобретает текучесть. При увеличении скорости ожижающего агента высота слоя возрастает, повышается его по-розпость 8 (доля объема, занятого ожижающим агентом), но в результате сохранения равновесия между силами трения и весом частиц последние не покидают пределов слоя, а его гидравлич. сопротивление остается постоянным. Частицы начинают выноситься из слоя при скорости потока ю" (вторая крптич. скорость П.), превышающей ги в десятки раз. [c.486]

    При перемешивании, формовании, проведении процессов в кипящем (псевдоожиженном) слое, трубопроводиом транспорте суспензий и т.п. в условиях сдвиговой деформащш в исходной объемной структуре появляются разрывы сплошности, в результате структура оказывается неоднородной, появляется текучесть, обусловленная разрывами сплошности, к-рую часто принимают за макс. текучесть (т.наз. псевдотекучесть). При воздействии на систему вибрацией происходит распад структуры на агрегаты, высвобождение значит, части иммобилизованной в структурной сетке дисперсионной С5)еды и более глубокое разрушение объемной структуры, однако при этом не исключается возможность возникновения новых агрегатов. Лишь сочетание добавок ПАВ и вибрационных воздействий создает на пов-сти частиц структурно-мех. барьер, препятствующий последующей коагуляции, что позволяет реализовать истинное изотропное разрушение исходной объемной стр)тстуры. Макс. текучесть системы может рассматриваться как сверхтекучесть, она на неск. порядков болыне, чем в момент возникновения локальных разрывов сплошности, снижение вязкости при этом может достигать 10-12 порядков. [c.447]

    Для неподвижного слоя шарообразных частиц (или частиц неправильной, но не вытянутой формы) е 0,4, независимо от диаметра частиц. Если расширение слоя бесконечно велико, так что частицы адсорбента выносятся потоком из колонны, то 8=1. Между этими двумя значениями е и существует псевдоожиженное состояние, при котором слой в целом приобретает текучесть отдельные зерна его беспорядочно перемещаются в пространстве, а зеркало слоя напоминает зеркало слабокипящей вязкой тяжелой жидкости, не смешивающейся с водой. Иногда псевдоожиженный слой в зависимости от интенсивности движения частиц в нем и характера вскипания на отдельных участках поверхности слоя называют также взвешенным , или кипящим . [c.110]

    При его небольшой скорости порошок неподвижен. С увеличением W высота слоя начинает возрастать (слой расширяется). Когда W достигает критического значения, при котором сила гидравлического сопротивлевия слоя восходящему потоку становится равной весу твердых частиц, слой приобретает текучесть и переходит в псевдоожиженное состояние. [c.318]

    Слой приобретает текучесть, частицы слоя интенсивно перемещаются в потоке в различных направлениях (рис. 6-16,6), в нем наблюдается проскакивание газовых пузырей, а на его свободной поверхности появляются волны и всплески порозность и высота слоя увеличиваются (рис. 6-16, Э). В этом состоянии слой напом -нает кипящую жидкость, благодаря чему он был назван псевдоожиженным (или кипящим). Скорость называют скоростью начала псевдоожижения. В этих условиях слой еще имеет довольно четкую верхнюю границу раздела с потоком, прошедшим слой. Линия ВС на рис. 6-16, г, д отражает влияние сил сцепления между частицами. [c.124]

    Псевдоожиженный (кипящий) слой (англ. fluidized bed) — слой мелкозернистых твердых частиц, находящихся в результате воздействия движущейся сквозь него газообразной или жидкой среды в псевдоожиженном (взвешенном, подвижном) состоянии, при котором силы тяжести, архимедовы силы и силы, обусловленные гидродинамическим сопротивлением и действующие на совокупность частиц слоя со стороны среды, уравновешены. При этом твердые частицы, перемещаясь в потоке в различных направлениях, находятся в движении в пределах слоя, а расстояние между ними и объем слоя меняются в зависимости от скорости среды, проходящей через него. Псевдоожиженный слой обладает следующим рядом свойств, аналогичных свойствам жидкости подвижность, текучесть, вязкость, осаждение и всплывание твердых тел, барботаж газовых пузырей [c.135]


Смотреть страницы где упоминается термин Текучесть псевдоожиженного сло: [c.245]    [c.58]    [c.96]    [c.245]    [c.234]    [c.235]    [c.199]    [c.200]    [c.16]    [c.282]    [c.604]    [c.133]    [c.137]   
Промышленное псевдоожижение (1976) -- [ c.95 , c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Текучесть



© 2025 chem21.info Реклама на сайте