Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод псевдоожиженного слоя

    Наличие определенных специфических недостатков метода псевдоожиженного слоя обусловило появление многочисленных модификаций его, предназначенных для преодоления тех из этих недостатков, которые наиболее существенны для данного типа технологического процесса. Прежде всего это коснулось проблемы перемешивания твердой фазы в аппарате. [c.241]

    При описании гидромеханики псевдоожиженного слоя независимые переменные, отражающие движение твердых частиц и ожижающего агента, быстро изменяются на участке- пути, сопоставимом с размерами частиц. Между тем, в ряде предложенных уравнений авторы оперируют (с оговорками или без них) сглаженными переменными, характеристики которых усреднены по области, значительно превышающей размер частиц, но малой по сравнению с размерами всей системы. Полученные уравнения описывают движение ожижающего агента и твердых частиц как двух взаимнопроникающих сплошных сред такой метод уже содержит некоторые существенные допущения. Например, для области, по которой усредняется скорость частиц в окрестности данной точки, в действительности существует некоторое распределение скоростей, так что поведение системы, вообще говоря, предопределено характером этого распределения, а не средним значением скорости. Такая ситуация обычна для задач неравновесной статистической механики, причем известно, что описывать движение, используя локальную усредненную скорость, допустимо только в том случае, когда взаимодействие между частицами характеризуется достаточной силой и частотой, чтобы обеспечить квазиравновесное распределение скоростей. [c.75]


    В химической технологии, энергетике, и других отраслях техники получил широкое применение специфический метод контактирования газовой (или жидкой) фазы с дисперсным твердым материалом — метод псевдоожиженного слоя. Сущность образования [c.56]

    Псевдоожиженный слой. Применение метода псевдоожиженного слоя целесообразно для сильно экзотермических процессов в кинетической области и для процессов, требующих циркуляцию катализатора. Для первой группы процессов производительность единицы объема катализатора определяется максимально допустимым тепловыделением в единицы объема, которое отвечает максимальной величине коэффициента теплопередачи. [c.73]

    Известно много методов, пригодных для определения реологических свойств жидкости, но только немногие из них дают истинную величину ее текучести. Это методы — капиллярный, падающего шара, Куэтта и крутильного маятника. В настоящее время уравнение течений, исходя из диаграммы сдвига, может быть написано только применительно к двум методам капиллярному и Куэтта Капиллярный вискозиметр нельзя использовать в псевдоожиженных системах из-за неблагоприятного пристеночного эффекта в капиллярах. Вискозиметр Куэтта может быть использован при соблюдении ряда важных условий (см. ниже). В случае вискозиметров (с падающим шаром и крутильного) не удается по диаграмме сдвига составить общее уравнение течения (известны лишь частные решения ). Добавим, что в вискозиметрах с падающим шаром очень велик пристеночный эффект. Кроме того, следует учитывать значительное нарушение структуры псевдоожиженного слоя вблизи лобовой поверхности движущегося шара .  [c.229]

    Метод псевдоожиженного слоя и некоторые его разновидности используются для организации процессов непрерывной сушки многих дисперсных (и не только дисперсных) материалов в химической промышленности, энергетике, пищевой промышленности и других отраслях [1]. [c.150]

Рис. XI-9. Схемы разделения смеси твердых частиц по размерам (плотностям) методом ректификации в псевдоожиженном слое а — принципиальная схема I — подача воздуха II — подача исходной смеси III — вывод кубового остатка IV — возврат флегмы мелких частиц в колонну V — отбор дистиллята VI — выход воздуха, отделенного от твердых частиц Рис. XI-9. <a href="/info/68922">Схемы разделения</a> смеси <a href="/info/40536">твердых частиц</a> по размерам (плотностям) <a href="/info/13575">методом ректификации</a> в <a href="/info/25630">псевдоожиженном слое</a> а — <a href="/info/24285">принципиальная схема</a> I — <a href="/info/63052">подача воздуха</a> II — <a href="/info/1620965">подача исходной</a> смеси III — вывод кубового остатка IV — <a href="/info/1224479">возврат флегмы</a> <a href="/info/1667984">мелких частиц</a> в колонну V — отбор дистиллята VI — <a href="/info/10746">выход воздуха</a>, отделенного от твердых частиц

    Емельянов И. Д. и др. Определение коэффициента диффузии и массообмена между фазами в псевдоожиженном слое методом трассирующего газа.— Химическая промышленность , 1967, Хг 6. [c.167]

    В последние годы предложены многочисленные методы усовершенствования технологии этих процессов, в особенности реакторов (псевдоожиженный слой). Намечены пути проведения процесса в широком интервале рабочих условий и, следовательно, получения различных продуктов на одной и той же установке. [c.257]

    По адсорбционным свойствам микросферические цеолиты близки к соответствующим таблетированным образцам. Освоение метода производства микросферических цеолитов в промышленном масштабе позволит осуществить ряд процессов разделения и очистки газов по непрерывной схеме в движущемся или псевдоожиженном слое адсорбента. [c.104]

    Псевдоожиженный слой можно также применять при окислении SO2. Мухленов и др. подчеркивают достоинства этого метода. На входе в реактор газ может иметь более высокое содержание SO2. Понижение температуры позволит поддерживать температуру в слое на оптимальном уровне. [c.356]

    Известные достоинства метода псевдоожижения обусловили его широкое применение во многих отраслях промышленности при осуш ествлении гетерогенных процессов с твердой фазой. Независимо от масштабов производства технологические процессы, протекающие в псевдоожиженном слое зернистого материала, отличаются высокой интенсивностью и простотой аппаратурного оформления, поддаются тонкому контролю и автоматическому регулированию. [c.9]

    Поскольку скорость начала псевдоожижения не имеет строго фиксированного значения, целесообразно условиться о стандартном методе ее определения для сопоставления характеристик различных систем наиболее удобно сделать это с помощью кривой псевдоожижения. Если провести прямые через экспериментальные точки для неподвижного (линия обратного хода) и псевдоожиженного слоев (игнорируя точки в переходной области), то абсцисса точки пересечения прямых дает воспроизводимое значение скорости начала псевдоожижения (рис. II.2). [c.43]

    Показано что экспериментальные данные по распространению малых возмущений в жидкостном псевдоожиженном слое являются гораздо более представительными для проверки уравнений движения, нежели данные о поведении полностью развитых пузырей. Были измерены скорости роста и распространения возмущений, а также доминирующая длина волны в ожижаемых водой высоких слоях стеклянных шариков разного диаметра при различной порозности слоя. Флуктуации порозности при различных условиях измеряли методом светопропускания. На рис. 111-4 в качестве примера представлены спектры сигналов, записанных на различных расстояниях от решетки в слоях шариков диаметром 1,27 мм. На рисунке отчетливо видны формирование и рост [c.93]

    Метод Дэвидсона был распространен также на удлиненные пузыри, образующиеся в поршневом псевдоожиженном слое малого диаметра (см. также гл. V). [c.102]

    Источник радиации также может располагаться на одной стороне псевдоожиженного слоя, а детектор — на другой 9. Такие приборы наиболее пригодны для исследования псевдоожиженного слоя очень малых размеров, хотя даже в лучшем случае они дают весьма неточную информацию. В благоприятных условиях, с помощью таких приборов можно фиксировать отдельные пузыри достаточно больших размеров, если их концентрация в системе невелика, или же определять среднюю концентрацию пузырей в горизонтальном сечении слоя. Конечно, данный метод не позволяет отличить одиночный большой пузырь от множества малых с эквивалентным эффектом, хотя особенности формы кривой сигнала могут дать некоторые дополнительные сведения. [c.126]

    Почти все описанные выше методы могут быть использованы для исследования промышленных аппаратов с псевдоожиженным слоем в реальных рабочих условиях и дать практическую информацию (более пли менее ценную) о реальных системах. Для более детального изучения природы газовых пузырей необходимы, однако, специальная экспериментальная техника и соответствующие приборы. Наиболее ценную информацию дают опыты с двухмерными псевдоожиженными слоями. [c.126]

    На фото У-1, а показана рентгенограмма газовой пробки в псевдоожиженном слое песка . На фото У-1, б и У-1, в демонстрируются фотографии двухмерных газовых пробок двуокиси азота при минимальном псевдоожиженном слое стеклянных сфер полученные методом Роу Величины радиусов кривизны для вершины этих поршней, приведенные в табл. У-З, удовлетворительно совпадают как с расчетными значениями, так и с опытными данными для газовых пробок в жидкостях. [c.182]


    На рис. У-10, а расчетная форма трехмерной газовой пробки (табл. У-2) сравнивается с экспериментально найденной в слое диаметром 100 мм при псевдоожижении слоя частиц кокса размером 154 мкм. Методом зондирования электрического сопротивления определяли длину пузыря как функцию радиального расстояния от оси трубы, причем поршневой режим изучали при наивысших скоростях газа до С/ = = 0,11 м/с. Хорошее [c.182]

    К псевдоожиженному слою вряд ли применима концепция прилипания . Поэтому значения То, найденные по методу Куэтта, характеризуют, видимо, не внутренние, а в основном внепшие свойства псевдоожиженной системы (так же как угол трения, напряжение сдвига и т. п.), отражая трение системы и стенок, но не внутреннее трение. — Прим. ред. [c.234]

    Диаграмму сдвига для развитого псевдоожиженного слоя (если не рассматривать упомянутые выше искажения) можно представить как функцию зЬ, что легко объяснить исходя из так называемой структурированной вязкости. При увеличении силы сдвига изменяются кинетическая энергия и ориентация твердых частиц, обусловливая некоторое изменение структуры. Разница между первоначальной неупорядоченной структурой слоя и новой структурой с частичной ориентацией не может быть обнаружена рентгеноскопическим методом Столь небольшое изменение структуры мало влияет на плотность слоя, но, очевидно, вызывает понижение напряжения сдвига (нри высоких градиентах скорости последнего). Следовательно, вязкость слоя (т. е. отношение напряжения к скорости сдвига) не является постоянной, а уменьшается с увеличением скорости сдвига. [c.242]

    Циркуляция в слое может быть определена, в частности, методом обратного перемешивания. На рис. УП-ЗО показаны диаметральные профили концентраций газа на различных уровнях в псевдоожиженном слое диаметром 152 мм при равномерном вводе трасера на уровне ж = 0. [c.307]

    Метод псевдоожиженного слоя очень удобен простотой аппаратурного оформления, возможностью проведения гетерогенных реакций псевдогомогенно и возможностью регулирования режима процесса количеством катализатора. Такие катализаторы, называемые флюидными, были впервые применены для каталитического крекинга в виде взвешенных в нефтяных парах тонкораспыленных алюмосиликатов, но вскоре были разработаны аналогичные катализаторы и для других реакций. Для конверсии метана в водяной газ (СО+2Н2) применяют тонкораспыленную смесь СиО с РСаОд или СиО с добавками никеля на А1,0з. Для окисления этилена в окись этилена рекомендован флюидный катализатор из серебра на А12О3 с промотерами из ВаОз или СиО. Для синтеза углеводородов из СО и На описаны флюидные железные катализаторы разного состава, дающие при больших объемных скоростях высокие выходы углеводородов. [c.60]

    Продольное перемешивание газа в слоях диаметром от 0,1 до 12 м исследовали методом трасера. Однако имеющиеся сведения по распределению времени пребывания газа в реакторе с псевдоожиженным слоем катализатора недостаточны для,предсказания степени превращения из-за неравномерного распределения катализатора между газовыми пузырями и непрерывной фазой .  [c.335]

    Цитируемая работа однако, еще раз демонстрирует недостатки рассматриваемого метода если средние диаметры пузырей не могут быть рассчитаны заранее или непосредственно измерены, то константы скорости химических реакций не могут быть определены с приемлемой точностью по данным о превращении в псевдоожиженном слое. [c.403]

    Гидроформинг-процесс проводится сейчас в прохмышленности также методом псевдоожиженного слоя. Хотя в процессе гидроформинга в результате дегидрирования освобождается водород, и дегидрирование и гидрирование представляют собой равновесный процесс, гидроформинг ведут под давлепием водорода. В присутствии водорода под давлением коксообразование значительно меньше, чем в отсутствие водорода, а благодаря высокой температуре равновесие сильно сдвинуто в сторону дегидрирования. Регенерация катализатора при работе методом псевдоожиженного слоя происходит непрерывно. [c.104]

    Вильямсон и Гарсайд предложили использовать для динамической сероочистки метод псевдоожиженного слоя [1, 3]. [c.436]

    Псевдоожиженный слой. Специальный метод организации контакта дисперсной твердой фазы с газовой или жидкой фазами—метод псевдоожиженного слоя получил распространение для ряда технологических процессов в химической и смежных отраслях промышленности. Такой способ имеет определенные преимущества по сравнению с методами неподвижного или движущегося слоев дисперсного материала сравнительно простая техника непрерывной выгрузки дисперсного материала из рабочей зоны, возможность повышать производительность аппарата по сплошной фазе без увеличения гидродинамического сопротивления, равномерное распределение температуры в объеме псевдоожиженного слоя, что существенно при проведении экзотермических процессов и т. п. Методу псевдоожиженного слоя присущи и некоторые недостатки. Так, интенсивное перемешивание приводит к выравниванию концентраций и снижению интенсивности массообменного процесса в псевдоожи-женном слое по сравнению с неподвижным движущимся слоем. Псевдоожиженные частицы при их энергичном циркуляционном движении в объеме псевдоожиженного слоя могут заметно истираться. В наиболее распространенном случае псевдоожи-жения газовым потоком равномерная структура слоя практически не наблюдается никстда. Твердые частицы проявляют склонность к образованию агрегатов, а газовая фаза образует пузыри, которые поднимаются вверх по слою. Одновременно с циркуляционным движением частицы совершают случайные перемещения. [c.75]

    Большинство мегодов исследования Г. к. основано на изучении зависимости состава реакц. системы от времени контакта реагентов с катализатором (см. Струевые ктетиче-ские методы. Статические кинетические методы, Проточно-циркуляционный метод, Псевдоожиженного слоя метод). Кинетач. данные позволяют судить о механизме [c.129]

    Закоксованный катализатор из отпарной секции реактора поступает в верхнюю зону разреженной фазы регенератора. В згой зоне уходящие дымовые газы передают тепло отработанному катализатору, который после контакта с газами поступает в псевдоожиженный слой катализатора, где и происходит Быжиг кокса. Такой метод утилизации тепла предотвращает перегрев линий отходящего газа, снижает энергетические затраты. Процесс флексикрекинга предусматривает установку скубберов или электрофильтров для ограничения выбросов механических взвесей. [c.17]

    Большое распространение получил метод производства фтале-ного ангидрида окислением нафталина в псевдоожиженном слое [c.357]

    Были сделаны попытки найти теоретическую зависимость порозности от скорости ожижаюш его агента либо на основании приближенных математических моделей, либо по экспериментальным данным для потоков, обтекаюш их неподвижные частицы Полученные результаты представляют ограниченную ценность в аспекте сопоставления свойств неподвижного и псевдоожиженного слоев. Модифицированный метод расчета описан в разделе П1,Г. [c.63]

    Не представляет затруднений распространение метода Мюррея на пузыри, форма которых ближе к действительной, путем использования конформного отображения Коллинса. Мюррей рассмотрел также случай двухмерного пузыря с замкнутой кильватерной зоной, ограниченной более сложными (с точками перегиба) линиями тока в потенциальном поле. Позднее Мюррей использовал подобный метод для анализа развития во времени пузыря, возникающего в однородном псевдоожиженном слое и первоначально имеющего сферическую (или круглую, в двух измерениях) форму. Он показал, что на нижней поверхности такого пузыря быстро развивается вогнутость, образующая верхнюю границу кильватерной зоны за пузырем. [c.113]

    Другой широко распространенный метод исследования заключается в использовании рентгеновских лучей. Источник последних, коллимированный для уменьшения рассеивания (экстрафокальиое излучение), устанавливается на одной стороне псевдоожиженного слоя проникающий пучок лучей воспринимается фйсфоресцирующим экраном (рис. 1У-4). Газовый пузырь появляется на негативе в виде темного пятна па световом фоне, т. е. метод совершенно аналогичен медицинской рентгенографии. Огромное преимущество этого метода состоит в том, что слой может иметь любую форму и, в принципе, любые размеры, и структура его совершенно не искажается при наблюдении. Метод позволяет визуально оценивать размеры и форму пузыря в любом его положении и пол чить гораздо больше информации, чем при использовании зондов. [c.128]

    Заканчивая обзор экспериментальных методов, следует упомянуть исследования газового потока и давления вокруг пузыря. Для исследования указанных характеристик псевдоожиженного слоя, особенно вблизи пузыря, могут быть использованы миниатюрные датчики давления. Концы датчиков должны иметь конструкцию, предотвращающую попадание в них твердых частпц [c.132]

    Работа, аналогичная описанной выше, проводилась со сферическим пузырем с использованием рентгеновского метода. В цилиндрическом аппарате на псевдоожиженный слой микросфер из свинцового стекла помещали слой микросфер из натриевого стеклл. Разница плотностей этих разновидностей стекла ничтожна, поэтому твердые частицы практически идентичны с точки зрения гидродинамики. Однако свинцовое стекло гораздо менее прозрачно для рентгеновских лучей, и в находящемся слое ясно видны темная (нижняя) и светлая (верхняя) области, разделенные горизонтальной границей. Прохождение пузыря через границу раздела было снято на кинопленку в рентгецовских лучах последовательные фазы процесса представлены на фото IV-16. [c.151]

    Метод исследования вязкости псевдоожиженного слоя при движении в нем шара обоснован и реализован в работе Гупало [1]. Си. также главу XI, раздел III. — Прим. ред. [c.229]

    Рассматриваемый метод применительно к псевдоожиженному слою имеет серьезные недостатки. Действительно, для получения достаточно точных результатов необходимо вращать цилиндр с относительно высокой скоростью. При этом (а) нарушается структура слоя около вращающихся цоверх- [c.229]

    От указанных недостатков в значительной мере свободен частотный метод определения вязкости псевдоожиженных систем, разработанный и реализованный в МИТХТ [2, 3]. Он состоит в наложении на псевдоожиженную снстему неустановившегося (но квазистационарного) возмущающего воздействия (предпочтительнее — медленных гармонических колебаний). Здесь возможно возвратно-поступательное движение двух плоских пластин или вращательное (реверсивное) движение соосных цилиндров с исевдоожижен-ным слоем между пластинами или цилиндрами. Как частный случай, наиболее удобный на практике, может быть использован одиночный цилиндр. Теоретический анализ позволил получить амплитудно-фазовые характеристики, по измеренным локальным значениям которых можно рассчитать кажущуюся вязкость псевдоожиженной системы или истинную вязкость капельной жидкости. Поскольку использование амплитудно-частотных характеристик связано с необходимостью предварительной калибровки прибора, вязкость псевдоожиженного слоя практически определяли по фазово-частотыым характеристикам, получаемым при размещении в слое миниатюрных тензодатчиков (их калибровка не требуется) на фиксированных расстояниях от оси цилиндра. По осциллограммам с тензодатчиков легко найти запаздывание одних слоев системы относительно других и рассчитать кинематическую вязкость псевдоожиженного слоя. — Доп. ред. [c.230]

    Две интересные работы были проведены сотрудниками лаборатории Шелла. В первой из них изучали перемешивание твердых частиц путем добавления в слой меченых (радиоактивным изотопом) зерен катализатора и отбора проб через определеннее интервалы времени из различных точек слоя. Были исследованы три промышленные установки каталитического крекинга. Распределения времени пребывания, найденные описанным методом, говорят о том, что псевдоожиженные слои в регенераторах и реакторах непрерывного действия приближаются по рабочему режиму к системе полного перемехнивания. Наблюдаемые отклонения от этого режима обусловлены наличием байпасов, малоподвижных -зон катализатора, участков с идеальным вытеснением или сочетанием перечисленных факторов. [c.259]

Таблица VII1-1. Размеры газовых пузырей в псевдоожиженных слоях, рассчитанные четырьмя различными методами Таблица VII1-1. <a href="/info/326741">Размеры газовых пузырей</a> в <a href="/info/25630">псевдоожиженных слоях</a>, рассчитанные четырьмя различными методами
    Один лз методов регистрации изменений в размерах пувыря сводится к определению частоты его появления на различны уровнях псевдоожиженного слоя, что позволяло в каждой горизонтальной плоскости рассчитать средний размер пузыря. При практическом измерении была использована модифициро- [c.341]

    Несмотря на некоторые различия и неполноту аналогии между капельной жидкостью и псевдоожиженным слоем, интерпретация свойств последнего в аспекте рассматриваемой аналогии представляется весьма полезной. Учет аналогии, несомненно, не исчерпывающейся рассмотренными выше примерами , позволяет шире раскрыть возможности применения псевдоожиженного слоя при разработке принципиально новых технологических процессов. Можно предполагать, что последующее развитие статиг стических методов исследования псевдоожиженных систем, именно вследствие их статистической обищостис капельнылш жидкостями, поможет вскрыть новые стороны аналогии и приведет к ее более строгому теоретическому обоснованию. [c.495]

    В последние годы метод псевдоожижения получил широкое применение в процессах сушки. В псевдоожиженном слое обезвоживаются не только зернистые материалы, но также пастк, суспензии, растворы, расплавы. Это позволило заменить многие периодические процессы непрерывными, более производительными и экономичными. [c.499]

    Новый метод сушки упрощает производство ряда химических продуктов. Например, такие операции, как выпаривание, кристаллизация, фильтрация, сушка и получение порошкообразного продукта, заменяются одной операцией— сушкой в псевдоожиженном слое, что гораздо акономичнее. Для достижения таких результатов, конечно, необходима разработка нового оборудования (в том числе систем контроля и автоматического управления) и методики его расчета. [c.499]


Смотреть страницы где упоминается термин Метод псевдоожиженного слоя: [c.60]    [c.21]    [c.313]    [c.147]    [c.145]   
Массообменные процессы химической технологии (1975) -- [ c.56 ]




ПОИСК





Смотрите так же термины и статьи:

Слоя метод



© 2025 chem21.info Реклама на сайте