Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейтрон горячие

    Обычные методы анализа не обладают чувствительностью, достаточной для определения таких количеств. На помощь пришел новый метод, основанный на том, что исследуемый материал подвергается действию соответствующих ядерных излучений (например, горячих нейтронов), в результате чего в материале образуются атомы, обладающие радиоактивностью. Исследуя выделяемое ими 3-излучение и спектр уизлучения, во многих случаях оказывается возможным с высокой чувствительностью определить вид и (более приближенно) относительное содержание посторонних атомов (примесей), содержащихся в материале. [c.558]


    В качестве примера вычислим температурный коэффициент для реактора СР-5 в холодном состоянии и покажем, как с помощью этого коэффициента можно определить избыток реактивности в реакторе при комнатной температуре. А именно мы вычислим температурный коэффициент для горячего неотравленного реактора по температурным производным коэффициента теплового использования, вероятностей нейтрону избежать утечки при замедлении и в процессе диффузии, а также вероятности избежать резонансного захвата. Изменение к при данном изменении температуры ЬТ легко определяется из соотношения (6.142). [c.231]

    ТРИТИЙ — радиоактивный изотоп водорода с массовым числом 3, ядро которого состоит из одного протона и двух нейтронов (символ Т или Н). Период полураспада = 12,26 лет при распаде испускает мягкие -частицы. Незначительные количества Т. образуются в результате ядерных процессов. В промышленности Т. получают облучением лития медленными нейтронами в ядерном реакторе. Т.— газ. Соединение Т. с кислородом Т О — сверхтяжелая вода — образуется при окислении Т. над горячим оксидом меди (И) или при электрическом разряде. Известно большое количество соединений (главным образом органических), включающих в себя, наряду с обычным водородом, и Т. Т. применяют как горючее в термоядерных бомбах и в ядерной технике, как радиоактивный индикатор в различных исследованиях, для определения возраста метеоритов и др. [c.254]

    Стадия так называемого равновесного процесса протекает как наиболее горячий термоядерный процесс при температурах 3-10 К. Между ядрами и элементарными частицами устанавливается статистическое равновесие. При этом возникают изотопы элементов, прилегающие к л<елезу Сг, Мп, Ре, Со, N1, Си. Эта стадия в жизни звезды очень коротка, она заканчивается взрывом и рассеянием в пространстве части материала звезды из сформировавшихся атомов от водорода до титана. В центральной части звезды сохраняются элементы железного максимума . В очень массивных звездах после катастрофического взрыва наступает стадия нейтронного захвата. Ядра элементов типа (4п-(-1), имеющие в составе один нейтрон сверх кратного числа, представляют собой мощный источник нейтронов  [c.426]

    Реакции отдачи. Химия горячих атомов. После осуществления акта ядерной реакции образовавшийся новый атом несет в себе значительную энергию, которая в сотни раз превышает энергию химической связи. Это приводит к своеобразному поведению вновь образовавшегося, или, как его часто называют, горячего атома. Обычно горячий атом отрывается от молекулы, в состав которой он входил, и переходит в новую химическую форму. Так, при облучении йодистого этила нейтронами происходит реакция Р (я, -у) 1 . Образующийся в результате реакции П обладает настолько большой энергией, что он отрывается от углеводородного радикала и в молекулярной форме растворяется в йодистом этиле, откуда легко может быть извлечен водным раствором какого-либо восстановителя (например, тиосульфата). [c.100]


    В этом случае в алюминиевый пенал помещается кварцевый стакан, наполненный смазочным материалом, в который введен горячий спай термопары. Проведенной таким образом дозиметрией учитывается дополнительная передача энергии смазочному материалу в результате ядерных превращений, имеющих место при поглощении медленных нейтронов указанными элементами. В остальном методика проведения дозиметрии такая же, как и для дозиметрического образца из полиэтилена. [c.247]

    Для получения органических меченых соединений практическое значение имеют методы химического синтеза, изотопного обмена, нейтронное облучение, биосинтез, метод горячих атомов. [c.135]

    Непосредственно с методом нейтронного облучения тесно связан метод горячих атомов или, как его называют иначе, метод ядер отдачи. Этот метод основан па том, что радиоактивный атом, только что образовавшийся в результате ядерных превращений, несет избыточную энергию отдачи, достаточную для того, чтобы вызвать разрыв связей атома с молекулой. Горячие атомы в течение некоторого времени способны замещать атомы в органических молекулах с образованием определенных органических соединений. Облучение нейтронами азотсодержащих органичес-. них соединений пиридина, анилина и т. п. в смеси со сложными органическими веществами позволяет получить последние с введением в их молекулу изотопа С . Метод горячих атомов представляет ценность прежде всего в тех случаях, когда использование синтетического метода или изотопного обмена связано с большими трудностями или вообще невозможно. Этим методом можно получать сложные природные вещества, меченные С , такие как [c.138]

    Легкоплавкость висмута стала одной из причин прихода его в ядерную энергетику. Но были и другие. Только бериллию (из всех металлов) уступает висмут по способности рассеивать тепловые нейтроны, почти не поглощая их при этом. Висмут используют в качестве теплоносителя и охлаждающего агента в ядерных реакторах. Иногда в горячей зоне реактора помещают уран, растворенный в жидком висмуте. [c.280]

    Следует напомнить, что для бета-облучения с достаточной энергией значительная часть (до 15%) от общей рассеянной энергии превращается в фотоны тормозного излучения. Большая часть этих фотонов (см. рис. 10) обладает малой энергией. Косвенным путем гамма-облучение может также вызвать тормозное излучение. Действительно, 90% гамма-энергии превращается во вторичное бета-излучение с высокой энергией в итоге общая энергия тормозного излучения имеет величину того же порядка, что и при бета-облучении. Другие частицы не дают фотонов тормозного излучения в результате непосредственного взаимодействия с веиХеством. Однако вторичное бета-излучение, возникающее от действия протонов, дейтонов и альфа-частиц, а также в результате взаимодействия атомов мишени и горячих атомов, образующихся при столкновении с быстрыми нейтронами, может дать такое тормозное излучение энергия его, однако, не велика, так как она пропорциональна энергии бета-облучения. Доля общей энергии, рассеянной в виде непрерывного спектра фотонов, составляет, таким образом, лишь несколько процентов. [c.212]

    Применяя радиоактивные индикаторы и электроды, активированные горячими нейтронами в реакторе, Швабе и Даме [94] исследовали на стеклах различных составов кинетику ионного обмена между фазами раствора и стекла в щелочной области. Полученные ими результаты еще раз подтверждают общую концепцию о ионообменном механизме действия стеклянного электрода, которая объясняет не только его водородную функцию, но и щелочную ошибку. Они пришли к заключению, что активность ионов водорода постоянна и равна единице в набухшем слое, где электрод обладает [c.282]

    Термин горячая частица берет свое начало от возникающих при радиоактивных превращениях атомов отдачи, обладающих большой энергией поступательного движения и названных поэтому горячими атомами. Примером здесь могут служить атомы трития, получающиеся при облучении медленными нейтронами (п) изотопа гелия Не (реакция п -г Не = = T-f-H) и обладающие начальной энергией 192 кэв (4,43 млн. ккал). Атомы трития с молекулами углеводородов RH преимущественно вступают в реакции T+RH = TH-f-R и T- -RH == RT + H. О реакциях горячих атомов трития см., например, в работах [431, 624]. [c.312]

    Атомы отдачи, обладающие достаточно большой энергией и вследствие этого называемые горячими атомами , получаются при захвате нейтронов практически всеми ядрами. Горячие атомы получаются также и при некоторых других ядерных реакциях, например, при реакции (п, 2п), в результате которой образуется более легкий изотоп данного элемента, например, п + Си< = Си + 2п, и при реакции (т, ), обратной реакции захвата нейтрона [c.461]


    В данном случае горячими атомами являются атомы бета-активного изотопа иода образующегося при захвате нейтрона иодом 127. Излучаемая при этом [c.462]

    Реакции горячих частиц, открытые Сциллардом и Чалмерсом [1197], нашли практическое применение для химического разделения различных изотопов, для синтеза меченых веществ с высокой удельной активностью, а также для нейтронной дозиметрии. [c.463]

    При этой реакции, заключающейся в ос1 обождении активированных тепловыми нейтронами горячих атомов из материнской молекулы, имеют особое значение три величины задержка Щ, удельная активность полученных изотопов (<5) и фактор обогащения [Р]. Указанные величины можно выразить следующими формулами  [c.164]

    У — поток холодного газа, пропускаемого через реактор для поглощения выделившейся теплоты 2 — стержни из урана 3 стержни из графита, замедляющие нейтроны и предотвращающие их поглощение ураном-238 4 - стержни из бора, хороню поглощающего нейтроны с их помощью регулируют поток нейтронов, 5 — бетонная защита предохраняет от утечки радиации 6 — поток горячего газа, превращающего воду в пар, иаЕфавляемый а турбину, связанную с электрогенератором 7 - пар, направляемый в 1урбипу 8 — насос [c.31]

    Ядерные реакции. Общие положения (75). Источники заряженных частиц и нейтронов (79). Классификация ядерных реакций (81 ). Ре акции деления ядер тяжелых элементов (86). Ядерные реакторы (88) Состоиние радиоактивных изотопов в ультрамалых концентрациях (91) Методы выделения и концентрирования радиоактивных изотопов (93) Реакции отдачи. Химия горячих атомов (100), Получение новых химических Элементов (102). [c.238]

    Для реакторов на быстрых нейтронах вопросы активации жидкометаллического теплоносителя и загрязнения поверхностей оборудования I контура также имеют бЬльщое значение. Джонсон [72] изучал поведение образцов из нержавеющей стали 304 и циркония, установленных в горячем и холодном участках байпасной петли реактора 5КЕ (США), в котором в качестве теплоносителя применяется расплавленный натрий. В один участок петли подавался горячий Ма прямо из [c.52]

    МЕЧЕНЫЕ СОЕДИ11ЁПИЯ, хим. соед., содержащие стабильные или радиоактивные нуклиды и используемые в качестве изотопных индикаторов. Большое число М. с. производят пром. способами, однако их можно получить и лаб. методами из меченого сырья. Для получения М. с., содержащих радиоактивные нуклиды, применяют, помимо обычного хим. синтеза, изотопный обмен, р-ции с участием горячих атомов, биосинтез и нек-рые др. спец. приемы. При выборе метода приготовления следует учитывать, что один метод позволяет получить М.с., содержащее атом-метку в строго определенном положении (напр., хлорбензол, содержащий атом только в положении 1), другие-М. с., в к-ром положение метки не фиксировано (напр., меченная радионуклидом глюкоза, получаемая биосинтезом с использованием в качестве исходного сырья СОз). В нек-рые простые соед., характеризующиеся высокой радиац. устойчивостью, радиоактивную метку можно ввести, облучая в-во потоком нейтронов, протонов или др. частиц. Напр., в СВг радиоактивную метку можно ввести облучением нейтронами Вг( , у) Вг. [c.78]

    Серебристо-белый металл тяжелый, мягкий, пластичный, радиоактивный. Во влажном воздухе покрывается оксидной пленкой. Пассивируется в холодной воде, концентрированных серной и азотной кислотах. Не реагирует со щелочами, гщфатом аммиака. Сильный восстановитель реагирует с горячей водой, хлороводородной кислотой, разбавленными серной и азотной кислотами. Сильными окислителями переводится в оксокатионы. Катион Np имеет темно-красную окраску, катион Np — желто-зеленую. Синтезирован (наиболее устойчивый изотоп Np) бомбардировкой нейтронами урана в ядерном реакторе. Выделен в виде NpFj и Npp4. Получение — восстановление кальцием или барием этих фторидов при нагревании. [c.346]

    Серебристо-белый металл тяжелый, мягкий, радиоактивный (наиболее устойчивый изотоп Ри). Во влажном воздухе покрывается оксидной пленкой. Пассивируется в холодной воде, концентрированной серной кислоте, азотной кислоте. Не реагирует со щелочами, пцфатом аммнака. Сильный восстановитель реагирует с горячей водой, хлороводородной кислотой, разбавленной серной кислотой. Сильными окислителями переводится в оксокатионы. Катион Ри имеет сине-фиолетовую окраску, катпон Ри — желто-коричневую. Синтезирован бомбардировкой нейтронами урана в ядерном реакторе. Выделен в виде РиРз и Рир4. Получение — восстановление кальцием или литием этих фторидов при нагревании. [c.347]

    Серебристо-белый металл тяжелый, мягкий, радиоактивный. Реакционноспособный реагирует с кислородом, во влажном воздухе покрывается оксидной пленкой. Сильный восстановитель реагирует с горячей водой, разбавленными кислотами. Сильными окислителями переводится в оксокатионы. Ион Ат в разбавленном растворе имеет розовую окраску, заметно гидролизуется. Синтезирован (наиболее устойчивый изотоп Ат) бомбардировкой нейтронами плутония в ядерном реакторе. Выделен в виде АтРз. Получение — восстановление АтРз барием при нагревании. [c.348]

    В ходе профилактического ремонта ядерных реакторов и при их снятии с эксплуатации проводится дезактивация корпуса реактора, трубопроводов и других частей. Внутренняя поверхность корпуса реактора и трубопроводов при соприкосновении с горячим теплоносителем покрывается коррозионной пленкой, которая сама аи-ивируется нейтронами и адсорбирует из теплоносителя радиоактивные нуклиды. Пленка на 75-95 % состоит из коррозионных отложений оксидов железа [45]. При температурах ниже 70 °С в ее состав входят у-РеОН, Ре(ОН)з и РегОз, а при более высокой — преобладающим компонентом является РегОз. Коррозионная пленка на нержавеющей стали формируется из оксидов железа и легирующих добавок такого состава, как РеО СггОз, №0 СггОз и а-РеО РегОз (Рез04). [c.200]

    В данной главе приведены сведения по технике измерения дифракции рентгеновских лучей и рассеяния нейтронов, а также обобщены типичные результаты применения этих методов для исследования структуры и динамики поведения воды и ионных растворов. Такие взаимодополняющие измерения дают прямую информацию на молекулярном уровне для проверки существующих теорий или развития и усовершенствования полуэмнирических моделей жидкостей. Имеются данные, указывающие на то, что структура воды оказывает значительное влияние на гидратацию ионов и структуру растворов. Однако все еще нет достаточно общих моделей, описывающих как структуру воды и водных растворов, так и соответствующие индивидуальные и групповые движения молекул. Тем не менее в настоящее время данные дифракции рентгеновских лучей и нейтронной спектроскопии вместе с данными, полученными другими методами, могут дать много необходимых (и, возможно, достаточных) ограничений, налагаемых на количественные модели. В периоды времени, малые по сравнению с временем релаксации, вода ведет себя как "горячее", или высоковозбужденное, "квазитвердое" тело с дефектами в водородных связях и квазитетраэдрическим ближним порядком. [c.298]

    Как указывалось выше, замещение атома в материнском (исходном) соединений на такой же атом отдачи приводит к образованию меченых веществ, для которых исходное соединение является носителем. Однако кроме этого основного процесса наблюдается, как правило, протекание нескольких конкурирующих реакций атомов отдачи с молекулами среды. Так, при изучении реакций горячих атомов Вг 2, получающихся при облучении нейтронами бромуксусцой кислоты, было обнаружено, что наряду с мечеными молекулами материнского вещества образуются ди-бромпроизводные и бромистые алкилы, меченные Вг . При облучении нейтронами смеси уксусной кислоты и броМа получаются значительные количества СНаВг СООН и СНзВг [ЮО]. [c.59]


Смотреть страницы где упоминается термин Нейтрон горячие: [c.229]    [c.155]    [c.102]    [c.306]    [c.170]    [c.112]    [c.240]    [c.151]    [c.102]    [c.112]    [c.139]    [c.34]    [c.130]    [c.32]    [c.462]   
Краткий курс физической химии Изд5 (1978) -- [ c.550 ]

Краткий курс физической химии Издание 3 (1963) -- [ c.552 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтрон

Нейтрона захват химия горячих атомов

Нейтрон—протон реакция, химия горячих

Нейтрон—протон реакция, химия горячих атомов



© 2025 chem21.info Реклама на сайте