Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гексан из этана

    Каталитическое окисление в жидкой фазе имеет то преимущество перед газофазным процессом, что позволяет более точно регулировать состав конечных продуктов [60]. Та1 , при окислепии н-бутана в жидкой фазе образуется в первую очередь уксусная кислота при полном отсутствии формальдегида. При окислепии же пропана в газовой фазе, напротив, образуются главным образом пропионовый альдегид, пропиловый спирт, ацетон, уксусный альдегид, уксусная кислота, формальдегид, метиловый спирт, окись пропилена, окись этилена. При окислении н-гексана теоретически можно получить около 60 различных продуктов окисления, не считая вторичных продуктов, образующихся за счет дальнейших реакций кислородсодержащих компонентов. Метан и этан не только содержатся в значительно больших количествах в природном газе, чем пропан или бутан, но они представляют интерес и для применения в качестве исходного сырья, так как нри окислении дают продукты более простого состава. Именно сложный состав продуктов газофазного окисления был причиной того, что внедрение этого процесса в промышленную практику сильно задержалось. [c.151]


    Номенклатура органических соединений. Систематическая номенклатура органических соединений исходит из строения молекулярного скелета соединений. Названия соединений составляются из корня и приставок (суффиксов). В на 5ваниях предельных углеводородов используется приставка ан, непредельных с одной двойной связью — ен, непредельных с двумя двойными связями — диен, непредельных с тройной СВЯЗ11Ю — ин. Корни наименований в зависимости от числа углеродных атомов в скелете образуются ИЗ греческих числительных С5 — пент, Се — гекс, С — гет, Са — окт и т. д., первые четыре предельные углеводорода с нормальной (не разветвленной) цепью имеют эмпирические названия С — метан, С2 — этан, С3 —пропан, С4 — бутан. В названиях алициклических углеводородов перед корнем ставится приставка цикло , а после корня — соответствующие суффиксы ан, ен, диен. Названия соединений, содержащих различные функциональные группы, составляются из названия углеводорода, произ- [c.143]

    Разделение углеводородов в газофракционирующей секции может проводиться по двум вариантам. Первый вариант предусматривает последовательность выделения компонентов в порядке уменьшения их летучести. В этом случае все тяжелые углеводороды проходят последовательно этановую, пропановую и бутано-вые колонны. По второму варианту из сырья выделяют широкую гамму углеводородов с последующим фракционированием их в отдельных колоннах. В этом случае первой по ходу сырья является бутановая колонна, сверху которой отбирают этан, пропан и бутан, подвергающиеся дальнейшему разделению в про-пановой колонне на этан-пропановую фракцию и бутан, а остаток бутановой колонны поступает в следующую (пентановую) колонну для разделения на пентановую фракцию (головной погон) и гек-сановую фракцию (нижний остаток). Чистота пропана, бутанов и гексана, получаемых по второй схеме, достигает 98%. Пентано-вая фракция в изопентановой колонне фракционируется на н-пен-тан и изопентан (рис. 1). [c.19]

    Эффект вытеснения со смешиванием. Он связан с коэффициентом вытеснения, который характеризует долю отбираемой нефти в контак-тируемой с закачиваемым агентом части пласта. Под смешиваемостью или взаиморастворимостью при данных термодинамических условиях понимается способность двух или более веществ смешиваться в неограниченной пропорции, образовывать единую однородную фазу с полным отсутствием поверхности раздела между ними. В результате капиллярные силы, удерживающие в порах остаточную нефть, исчезают, и закачиваемый агент вытесняет ее в направлении добывающих скважин. Среди способов вытеснения со смешиванием известны следующие создание оторочки сжиженного пропана, закачка обогащенного фракцией этан-гексана природного газа, закачка сухого газа высокого давления, вытеснение со смешиванием нефти с двуокисью углерода — последний является наиболее предпочтительным. [c.150]


    На описываемой установке перерабатывается газ, в котором молярная доля (в %) компонентов составляет азот — 0,17, двуокись углерода — 2,22, метан — 90,1, этан — 5,17, пропан — 1,65, бутаны — 0,44, пентаны — 0,12, гексаны + высшие — 0,13. Глубина извлечения углеводородов (в % от потенциала) достигает пропан — 81,7, бутаны — 97,5, пентаны — 99,9, гексаны + -Н высшие — 99,9. [c.190]

    На рис. 169, б показан пример адсорбционного вытеснения пропана гексаном в условиях промысловых испытаний процесса КЦА. Кроме этих компонентов, газ содержал этан, не.значительное количество пропана и бутана, а также следы воды. Компоненты тяжелее гексана в газе отсутствовали. [c.260]

    При повышении температуры, как видно из данных таблицы, увеличивается выход этилена. С увеличением числа углеродных атомов в молекуле а-олефина выход этилена возрастает, а бутадиена — значительно снижается. Константы скорости распада составляют 10 - 5о/т с- для бутена-1, io °2 с" для пентена-1, ioi .s5 g-29 2so/t для гексена-1 и Ю з,55 28 зз5/т ( - для гептена-1. Скорость термического распада этих олефинов при 1000 К примерно на порядок выше, чем соответствующих парафинов, тогда как этилен и пропилен при 1000 К и 0,1 МПа (1 кгс/см ) разлагаются со скоростью, примерно на порядок меньшей, чем этан и пропан соответственно. [c.74]

    В реакции н-пентана более 60 мол.% продуктов приходится на этан и пропан метан и бутан образуются не в эквимолекулярном соотношении. Из н-гексана получается преимущественно пропан скорость гидрокрекинга н-гексана при 371° С в 50 раз, при 427° С в 17 раз выше, чем для н-пентана, а кажущаяся энергия активации составляет 15 ккал/моль против 30 ккал/моль для н-пентана и н-бутана. Основным продуктом превращения смеси н-пентана и н-гек-сана также является пропан ( 70 мол.%), а этан получается в значительно меньших количествах, чем при гидрокрекинге одного н-пентана, т. е. н-гексан существенно влияет на направление реакции н-пентана. В то же время последний значительно снижает скорость превращения н-гексана. Очевидно, внутри полостей эрионита имеет место сильное взаимодействие молекул с различной длиной цепи, и ход процесса гидрокрекинга намного более сложен, чем при простом расщеплении связи С — С. [c.199]

    Как показывают данные табл. 20 и 21, гидрокрекинг гептанов при превращениях до 80—90% происходит посредине молекул с образованием в качестве основных продуктов пропана и бутанов (см. опыты 325, 254, 315 и 411). Эти продукты образуются в эквимолекулярных количествах. Высокое отношение количества изобутана к количеству н-бутана в опыте с к-гептаном (опыт 325) показывает, что реакциям гидрокрекинга предшествует реакция изомеризации промежуточного олефинового соедипения с образованием геитенов изостроения. При более высоких степенях превращения в продуктах реакции появляются метан и гексаны, этан и пентаны (см. опыты 325 и 316). [c.525]

    Основными горючими компонентами нефтяных паров являются предельные углеводороды метан, этан, пропан, бутан (с изомером), пентан (с изомером), гексан (с изомерами). Углеродород- ный состав нефтяных паров сильно зависит от степени подготовки лефти. Так, в парах сырых нефтей, а также после сепарации/газа и обессоливания довольно велико содержание метана и этана, шричем относительное содержание компонентов в паровой фазе сильно изменяется после каждого захода нефти в дышащие резерв- -вуары на пути движения с промыслов. Однако после стабилизации нефти колебания состава паров становятся менее значитель- ными, в парах почти полностью исчезает метан, уменьшается содержание этана, возрастает содержание пентана и гексана, а юсновную массу паров многих стабилизированных нефтей составляют пропан и бутан. Такие особенности углеводородного состава [c.18]

    Метод закачки сухого газа высокого давления, основанный на процессе обратного испарения компонентов этан-гексана из нефти в закачиваемый газ, теоретически может обеспечить высокую степень вытеснения, но к этому методу предъявляют серьезные требования на границе раздела необходимо поддерживать весьма высокое давление исходная пластовая нефть при этом давлении должна быть существенно недонасыщена газом и содержать значительное количество компонентов Сг — Се плотность пластовой нефти должна быть невысокой. [c.150]

    Отмечено, что метан [1], этан [1] и пропан [2] медленно раствр-ряются в дымящей серной кислоте, но полученные при этом соединения, очевидно, выделены не были. Изобутан [3] растворяется легко, образуя вещество, которое, судя по его низкой растворимости в воде, вероятно, не является 2-метилпропансульфокисло-той. При взаимодействии н-гексана, н-гептана и н-октана [41 с дымящей серной кислотой получаются соединения, представляющие собой, согласно анализам, моносульфокислоты. Обработка серным ангидридом при температуре кипения углеводорода дает дисульфированные продукты. Последующее исследование [5] показало, что эти соединения представляют собой скорее сложные-эфиры оксисульфокислот, чем дисульфокислоты. Окисление, пови- [c.105]


    Углеводородные примеси остаются в результате неполного извлечения их на головных и промежуточных ступенях фракционной разгонки. К ним следует отнести следующие соединения Сг — этан, этилен С5+ — нормальный пентан, изопентаны, пентены и гексаны С3Н4 — пропадиен, метилацетилен. [c.28]

    Более высококипящие фракции нефтей содержат значительно меньше этих углеводородов, и в масляных фракциях некоторых нефтей парафины практически отсутствуют. Парафиновые углеводороды нефтей представляют собой газообразные, жидкие и твердые при обыкновенной температуре вещества. Газообразные — метан, этан, пропан, изобутан и н-бутан — содержатся в газах, выделяющихся из нефтяных месторождений, Пентаны, гексаны и т. д., кончая пентадеканом (С1нНз2), представляют собой жидкие вещества, входящие в состав отдельных фракций. Начиная с гексадекана нормальные парафиновые углеводороды тверды при обыкновенной температуре и могут находиться частично в растворенном, частично в кристаллическом состоянии в нефтях и в их высококипящих фракциях. [c.8]

    Гексаметилен, энергия разрыва кольца 305 см. Циклогексан Гексаметилбензол 489, 528, 656 Гексаметилдиаминодифенил 491 Гексаметилдисилоксан 184 Гексаметиленгликоль 306 Гексаметилендиамин 345, 960 Гексаметил-л-розанилин хлористый 751 Гексаметилентетрамин 212, 628, 1052 Гексаметилтриеилоксаи, циклический 184 Гекса (-о-метилфенил) -этан 497  [c.1165]

    Среди простых алкильных катионов наиболее устойчив грег-бутил-катион. Все известные алкил-катионы, содержащие не менее четырех атомов углерода, при нагревании образуют трет-бутил-катион это относится даже к относительно устойчивым трет-пеитил- и трет-гексил-катиоисодержащим фрагментам [19]. При обработке суперкислотой метан [20], этан и пропан в качестве главного продукта дают трег-бутил-катионы (см. реакцию 12-16) даже парафин и полиэтилен образуют трет-бутил-катион. Полученные из растворов суперкислот твердые соли трет-бутил- и трет-пентил-катионов, например МезС ЗЬРб , устойчивы при температурах ниже —20 °С [21]. [c.219]

    В обычных условиях нефтезаводов целью газофракционировки является получение узких фракций, например 1) гексана в смеси с более тяжелыми, 2) пентан-пентеновой фракции, 3) бутан-бу-теновой, 4) пропан-пропеновой и 5) остаточного сухого газа, включающего этан, этен, метан, водород. [c.260]

    Природные газы представляют собой смесь большого числа элементов и химических соединений, содержат в своем составе углеводороды предельного ряда метан, этан, пронан, изо- и -бутаны, нентан и его изомеры, в небольших количествах в природных газах присутствуют гексаны, гептаны и более тяжелые углеводороды, включая ароматические и нафтеновые соединения (бензол, толуол, ксилолы, циклонентан, циклогексан и др.). В природных газах всегда в том или ином количестве содержатся азот, диуокисг. углерода, пары воды, элементы нулевой группы (гелий, неон, аргон и др.). [c.5]

    В связи с быстрым развитием в мире хим. и нефтехим. прюм-сти потребность в Н. увеличивается не только с целью повышения выработки топлив и масел, но и как источника ценного сырья для произ-ва синтетнч. каучуков и волокон, пластмасс, ПАВ, моющих ср-в, пластификаторов, присадок, красителей и др. (более i% от объема мировой добычи). Среди получаемых из Н. исходных в-в для этих произ-в наиб, применение нашли парафиновые углеводороды-метан, этан, пропан, бутаны, пентаны, гексаны, а также высокомолекулярные (10-20 атомов углерода в молекул нафтеновые-циклогексан ароматич. углеводороды-бензол, толуол, ксилолы, этилбензол олефшовые и диолефино- [c.235]

    Ацетилен, 1-гекс-окси-2-ацетилтио-этан 1-Винил-2-ч-гекс- окситиоэтан КОН в метаноле автоклав, в диоксане, 90— 100° С. Выход 84% [551] [c.60]

    Дихлорэтан (I), НС1 Тетрахлорэтилен (II), 1,2-тетрахлор-этан (III), гекса-хлорэтилен и др. СиСЦ на Y-AI2O3 (14,5% Си) в вихревом слое, 362° С. Конверсия I в высокохлорированные продукты—79%, выход 11 — 25%, III — 3994 [583]. См. также [584]  [c.923]

    Нитро- этан Тетра- хлор- этан Четы- реххло- ристый углерод Изопро- пиловый спирт Мура- вьиная кисло- та л-Кре- вол Цикло- гекса- нон Петро- лейный эфир Три. хлор- этилен Сероуг- лерод [c.315]

    Однако еще многое остается недостаточно изученным. С практической точки зрения имеется обширное ноле деятельности по созданию лучших катализаторов, которые позволят значительно понизить образование кокса или обеспечат нротекапие таких реакций, в результате которых будут но-лучаться продукты особых качеств. С теоретической точки зрения ще многое предстоит сделать для выяснения кинетики и механизма процесса. Эта теория в применении к объяснению инициирования крекинга нафтеновых и парафиновых углеводородов имеет ряд неясных мест. Кроме того, опубликовано еще очень мало данных но многим отдельным стадиям цепи карбоний-ионных реакций. Нуждается в развитии также и количественная сторона теории карбоний-ионов. Несомненно, нри детальном изучении реакций крекинга большую пользу должны принести исследования, проводимые с соединениями, содержащими радиоактивный углерод или тяжелый изотоН углерода. Начало исследованиям в этом направлении положили Мак-Магон [65], изучавший образование кокса из радиоактивных парафиновых углеводородов, и Клименок с сотрудниками [60], которые установили лишь незначительный обмен между радиоактивным метаном (или этаном) и олефиновыми углеводородами, а также Андреев с сотрудниками [2], изучавшие крекинг -гексана в присутствии радиоактивного этилена. [c.459]


Смотреть страницы где упоминается термин Гексан из этана: [c.439]    [c.192]    [c.43]    [c.58]    [c.1018]    [c.22]    [c.79]    [c.330]    [c.497]    [c.1166]    [c.428]    [c.212]    [c.213]    [c.247]    [c.188]    [c.370]    [c.384]    [c.188]    [c.195]    [c.195]    [c.221]    [c.160]    [c.635]    [c.358]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.299 ]




ПОИСК





Смотрите так же термины и статьи:

Гекса бифенил этан

Гекса иен

Гекса нафтил этан

Гекса нитрофенил этан

Гексаи

Гексан

Гексеи

Гексил

Метан 51. Этан 57. Пропан 64. Бутаны 67. Иентаны 71. Гексан

Системы многокомпонентные гексан—метан пентан—пропан—этан



© 2025 chem21.info Реклама на сайте