Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Животный уголь как катализатор при

    Галоидирование. Катализаторы, наиболее часто применяющиеся для хлорирования металлическое железо, окись меди, бром, сера, иод, галоиды железа, сурьмы, олова, мышьяка, фосфора, алюминия и меди растительный и животный уголь, активированный боксит и другие глины. Большинство этих катализаторов является носителями галоидов. Так, Fe, Sb и Р в галоидных соединениях способны существовать в двух валентных состояниях в присутствии свободного хлора они поочередно присоединяют и отдают хлор в активной форме. Аналогично иод, бром и сера образуют с хлором неустойчивые соединения. Катализаторы броми-рования подобны катализаторам хлорирования. Для иодирования наилучшим ускорителем служит фосфор. Для проведения процесса фторирования катализатор не требуется. В присутствии кислорода галоидирование замедляется. [c.329]


    Хорошими катализаторами реакции сульфирования бензола и era гомологов являются также кремнезем и животный уголь . [c.243]

    В лучшем из каталитических методов в качестве катализатора применяют ион аммиаката серебра [12, 13] или активированный животный уголь [14]. Последний метод весьма прост, занимает немного времени и дает высокий выход чистого препарата. Для стабилизации иона ам- [c.210]

    Реакция протекает с участием катализатора (активированный животный уголь). Весьма важно также иметь в системе значительный избыток соли аммония, что сдвигает реакцию вправо. [c.56]

    Так как каталитические процессы развиваются в основном на поверхности катализаторов, для получения развитой поверхности последние наносят на подходящие носители (асбест, кусочки глины, животный уголь, сульфат бария и др.). [c.274]

    Каталитическое воздействие на эту реакцию оказывают многие вещества животный уголь при 120° [22], хлорное железо, хлорная медь, пятихлористая сурьма, бром, свинец и т. д. Полагают [23], что реакции замещения с получением полихлорпроизводных возбуждаются за счет теплоты образования дихлорэтана, которая обусловливает появление активированных молекул его, способных к дальнейшим реакциям. Наличие кислорода в реакционной среде приводит к дезактивации таких молекул дихлорэтана с повышенным запасом энергии и к переходу этой энергии в теплоту. Таким образом, кислород также можно рассматривать как своеобразный катализатор реакции присоединения хлора по двойной связи. [c.312]

    Фосген образуется при присоединении хлора к окиси углерода при повышенной температуре в технике при этом применяется в качестве катализатора животный уголь. При чем устанавливается равновесие  [c.348]

    Активированный древесный уголь, введенный в пищевой рацион животных и птиц, снижает желудочно-кишечные заболевания и создает благоприятные условия для увеличения их веса, повышает удойность молочного скота. Активированный уголь применяют в качестве катализатора в контактных процессах химической промышленности. [c.163]

    Второй метод получения высокодисперсных пористых адсорбентов и катализаторов заключается в обработке крупнопористых материалов агрессивными газами или жидкостями. При такой обработке получаются пористые тела губчатой структуры. Этим методом получают активные угли (пористые углеродные адсорбенты) из различного сырья — каменного угля, торфа, дерева, животных костей, ореховых косточек и др. Из этих материалов сначала удаляют летучие вещества при нагревании без доступа воздуха, в результате чего образуется крупнопористая структура угля, затем активируют уголь [c.155]


    Исследование было ограничено угольными катализаторами, так как предварительные опыты с силикагелем и металлическими катализаторами дали отрицательные результаты. Были использованы различные сорта животного и растительного угля, их предварительно обрабатывали стандартным способом, встряхивая в течение длительного времени с концентрированной соляной кислотой, а затем с разбавленным раствором едкого натра. После отмывки от электролита и высушивания уголь кипятили в течение нескольких часов с абсолютным спиртом и затем с бензолом. В заключение уголь нагревали до 200° и выдерживали при этой температуре и давлении менее 10" мм в течение нескольких часов. В пределах экспериментальной ошибки каталитическое влияние одинаковых по величине площадей поверхности различных углей было одним и тем же. Катализаторы, использованные в большей части этой работы, имели поверхности порядка 10 сж /г. [c.663]

    Катализаторы, вообще говоря, имеют тенденцию ускорять хлорирование метана и повидимому способствуют образованию более высоко хлорированных продуктов, чем хлористый метил. Употребляются различные катализаторы, как например хлориды металлов (например хлорное железо, хлористое серебро, частично зосстановленная хлористая медь, хлористый алюминий, хлористый марганец, пятихлористая сурьма, пятихлористый молибден, уголь, пропитанный хлоридами платины, цинка, кадмия, олова и свинца), а также различные адсорбирующ1ие материалы, как активированный др1е1весный уголь и животный уголь, смешанный с мелко раздробленной окисью кальция. Эти катализаторы применяются при температурах 300° и выше, а так как хлорирование при этих те.мпературах может протекать и без по.мощи катализаторов, то полученные результаты не всегда могут быть отнесены исключительно к их действию. [c.753]

    Окись углерода при нагревании соединяется с серой, образуя сероокись углерода OS при обл ении или в присутствии катализаторов (платиновая чернь или животный уголь) она соединяется с хлором с образованием хлорокиси, углерода (фосгена) СОСЬ. Пропуская окись углерода, смешанную с водородом, над тонкоизмельченным никелем при 250° получают метан С0-ЬЗН2=СН4-1-Н20. [c.485]

    Изменение характера катализатора (коллоидальная платина, никель) и растворителя (метиловый спирт, этиловый эфир, вода) не привело к образованию аминов. - Так, восстановлением 4-метокси-6-нитростирола палладиевой чернью в среде пиридина был получен бимолекулярный продукт, а в той же среде палладированный животный уголь превращал этот арилнитроалкен в альдоксим  [c.173]

    Джойнер [99] также изучал действие различных веществ как ингибиторов. Он показал, что желатина, клей и пептон, взятые в равных концентрациях, вызывают одинаковый эффект. Было найдено, что крахмал, декстрин и сахароза также могут служить в качестве ингибиторов при условии, если их использовать в количествах, превышающих количество желатины в 100—300 раз. Оловянная кислота в коллоидном состоянии вполне эффективна, хотя и не в такой степени, как желатина. Было показано, что даже пептизированная кремневая кислота является ингибитором. Такие вещества, как животный уголь, древесный уголь, асбестовый порошок и порошкообразная пемза, оказывают полезное действие, если они присутствуют в относительно больших количествах. Мочевина, сахарин, азид натрия, олеиновокислый и пальмитиновокислый натрий, хлористый литий и другие подобные вещества не оказывают какого-либо действия. Джойнер исс.ледовал также поведение натриевой соли глутаминовой кислоты, тирозина, триптофана и мочевой кислоты, причем, хотя эти вещества и образуют комплексное соединение с ионами меди и других металлов, их действие в качестве ингибиторов реакции (3) оказалось незначительным [99]. Джойнер показал, что молекулярно-диспергированные вещества не являются ингибиторами, однако он предложил патентную заявку на процесс [102], в котором продукт гидролиза клея применяется в качестве катализатора для устранения нежелательного вспенивания, наблюдаемого при использовании соответствующих ингибиторов в больших количествах (см. также [103]). [c.34]

    В в качестве катализатора применяют животный уголь или зкти- [c.307]

    Каталитическим действием на эту реакцию обладают многие вещества животный уголь при 120° [13], хлорное железо, хлорная медь, пятихлористая сурьма при 30—120°, бром, свинец я т. д. Добрянский считает, что в его опытах железная поверхность колонны также играла роль катализатора. Влага играет роль положительного катализатора и способствует реакции присоединения. Стюарт и Смис [10] полагают, что реакции замещения возбуждаются за счет теплоты присоединения активированных молекул дихлорэтана, способных реагировать с новыми количествами хлора и давать полихлорпроизводные. Наличие кислорода в реакционной среде приводит к дезактивации таких молекул дихлорэтана с повышенным запасом энергии и к переходу этой энергии в теплоту. Таким образом, кислород также можно рассматривать как своеобразный катализатор реакции присоединения хлора по двойной связи. [c.272]


    АКТИВИРОВАННЫЙ УГОЛЬ-уголь с чрезвычайно развитой микро- и макропористостью (размеры микропрр составляют от 10 — 20 до 1000 А). Существует два типа А. у. Первый тип применяют для сорбции газов и паров имеет большое количество микропор, обусловливающих сильную адсорбционную способность. Второй тип используют для сорбции растворенных веществ. Оба типа А. у. должны иметь большую легко доступную внутреннюю поверхность пор. А. у. изготовляют в две стадии. 1) Выжигают древесину, скорлупу орехов, косточки плодов, кости животных при температуре 170—400° С без доступа воздуха, чем достигают удаления воды из исходного органического вещества, метилового спирта, уксусной кислоты, смолообразных веществ и других, а также развития пористой поверхности. 2) Полученный уголь-сырец активируют, удаляя из пор продукты сухой перегонки и развивая поверхность угля. Это достигается действием газов-окислителей, перегретым водяным паром или диоксидом углерода при температуре 800—900° С или предварительным пропитыванием угля-сырца активирующими примесями (хлоридом цинка, сульфидом калия), дальнейшим прокаливанием и промыванием водой. До-стагочно тонкопористый А. у. можно получить термическим разложением некоторых полимеров, например, поли-винилиденхлорида (сарановые угли). А. у. применяют для разделения газовой смеси, в противогазах, как носитель катализаторов, в газовой хроматографии, для очистки растворов, сахарных соков, воды, в медицине для поглощения газов и различных вредных веществ при кишечно-желудочных заболеваниях. [c.13]

    Адсорбционные свойства древесного и костяного угля известны давно. Ловиц (1785) применял уголь для обесцвечивания растворов винной кислоты. Фигье (1811) обнаружил, что костяной уголь тоже обладает заметной обесцве-чивающей способностью. Адсорбционные и каталитические свойства активных углей растительного и животного происхождения, приготовленных различными способами, изменяются в зависимости от размера пор и содержания посторонних веществ. Структура и примеси посторонних веществ влияют на применение углистых материалов в каталитических реакциях. Некоторые активированные угли могут служить адсорбентами для газов и жидкостей и в известной степени катализаторами. Например, в присутствии кислорода некоторые виды угля легко окисляют сероводород другие окисляют окись углерода. Многие угли пригодны для хлорирования, восстановления, дегидрогенизации и полимеризации. Аналогично поведение геля кремневой кислоты и цеолитов. Проницаемость и пропитываемость являются другими факторами, с которыми следует считаться при применении углистых материалов как носителей для катализаторов. Отверстия пор или капилляров неактивированного угля закрыты пленками, состоящими из ориентированных, насыщенных атомов. Обычно такие пленки образуются в результате адсорбции смолистых веществ во время процесса коксования. У активированного угля полости образуются системами атомов, в которых на один ненасыщенный активный углеродный атом приходится двенадцать неактивных углеродных атомов [342]. Различные виды углей имеют поры различного размера. Например  [c.480]

    Применение некоторых пористых материалов, как например древесный уголь, было описано. многими исследователями. Так, Yoneyama и Ban превратили большое количество метана в хлористый метил при пропускании сухой смеси метана и хлора при 250° над катализатором — животным углем и мелкораздробленной известью. [c.761]

    В качестве катализатора для хлорирования этана был предложен также древесный уголь и другие пористые вещества. Так например Mallet предложил проводить хлорироваиие этана в присутствии животного угля при 30—90°. [c.776]

    Энглер [12] был первым, высказавшим теорию, согласно которой материнским веществом, из которого образовалась нефть, является не каменный уголь, а иное органическое вещество. Среди многочисленных исследователей, которыми были поставлены существенные опыты или которые поддерживали теорию Энгле-ра, мы назовем только Кремера [13] и Гефера [9, 14]. Согласно теории Энглера, в образовании нефти можно различать три стадии, резко отграниченных друг от друга. В первой стадии животные и растительные организмы осаждаются на дне внутренних водоемов (лагунные условия). Органическое вещество разлагается под действием бактерий, причем углеводы и большая часть белковых веществ превращаются в растворимые в воде вещества или в газы и таким образом удаляются. Остаются только жиры, воски и другие растворимые в жирах и стойкие вещества (смолы, холестерин и др.). Опытным путем было показано, что если органическое вещество подвергать разложению, то в нем увеличивается относительное содержание жнров. Во второй стадии под влиянием высоких температур и давлений сперва от соединений, содержащих карбоксильную группу, отщепляется углекислота, а от оксикислот и спиртов—вода. В результате этого процесса в остатке получается твердый битум. Далее, продолжающееся действие тепла и давления вызывает небольшой крекинг, в результате чего образуется так называед1ая протонефть—жидкость с высоким содержанием непредельных. Наличие процессов, происходящих во второй стадии, Энглер также доказал опытным путем, показав, что перегонка жиров под давлением ведет к образованию жидкости типа протонефти. Он предположил, что время и высокое давление в реальных условиях компенсируют более низкую температуру нефти и высокое давление в осадочных породах сравнительно с температурой модельных опытов В третьей стадии непредельные компоненты протонефти полимеризуются под действием гетерогенных катализаторов. Образовавшиеся таким образом полиолефипы в свою очередь превращаются в нафтеновые, а иногда и в парафиновые углеводороды. Присутствие ароматических углеводородов Энглер объясняет их непосредственным образованием в процессе крекинга, циклизацией в результате реакций конденсации и образованием в процессе разложения белка. Энглер предполагает, что грэмит и гильсонит, встречающиеся в природе, образовались из нефти в результате глубокой полимеризации и окисления. [c.37]

    Мочевина Уголь, азот воздуха и углекислота То же Смесь аммиака и углекислоты нагревают до 200° и при, давлении до 200 атм. в присутствии катализаторов получают мочевину -2NHз+ 02= = СО (NH,), 4- Н О Мочевина используется не только в качестве удобрения, но и как добавка в корм животным, а в промышленности в производстве пластмасс и т. д. [c.195]


Смотреть страницы где упоминается термин Животный уголь как катализатор при: [c.87]    [c.106]    [c.144]    [c.141]    [c.97]    [c.106]    [c.682]    [c.44]    [c.236]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Животный уголь как катализатор при хлорировании метана

Катализаторы на угле

Палладий на животном угле, катализатор



© 2024 chem21.info Реклама на сайте