Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изопарафины в парафине

    Парафины, или предельные углеводороды (алканы). В молекулы этих углеводородов может входить различное число атомов углерода, соединенных между собой только одинарными связями и образующих открытые цепи. Общая эмпирическая формула этой группы углеводородов С Н2 +2. Парафины, молекулы которых имеют неразветвленные цепи атомов углерода, носят название нормальных парафинов (н — парафинов, н — алканов). Кроме нормальных парафинов, в топливах находятся изомерные углеводороды — изопарафины (изоалканы). [c.11]


    Нормальные парафины+возможно некоторые изопарафины [c.32]

    Б. А. Казанский, Г. С. Ландсберг, А. Ф. Платэ с сотрудниками [11] тем же методом в карачухурском бензине идентифицировали н-парафины С4—Сэ и изопарафины 2-метилбутан, 2,3-диметилбутан, 2-метилиентан, 3-метилпентан, 2,2-диметилпентан, 2,4-диметиляентаи, 3,3-диметилпентан, 2-ме-тилгсксан, 3-метилгексан, 3-этилпентан, 2,2-диметилгексан, [c.118]

    Присутствие парафинов в жидкой фазе обусловливает меньшую вязкость масляных фракций нефти и хорошие вязкостно-температурные свойства. При этом у н-парафинов эти свойства проявляются отчетливее, чем у изопарафинов. [c.140]

    Реакции синтеза высокомолекулярных углеводородов С — ал— килированием являются обратными по отношению к крекингу алканов и потому имеют сходные механизмы реагирования и относятся к одному классу катализа — кислотному. Реакции С — алкилирования протекают с выделением 85 — 90 кДж/моль (20 — 22 ккалУмоль) тепла в зависимости от вида олефина и образующегося изопарафина, поэтому термодинамически предпочтительны низкие темшфатуры, причем уже при 100 °С и ниже ее можно считать практически необратимой. Именно в таких условиях осуществляют промышленные процессы каталитического алкилирования. Из парафинов к каталитическому алкилированию способны только изо — [c.137]

    Качественно установлено, что изомеризация олефинов может проходить над более слабыми кислыми катализаторами или при более мягких условиях сравнительно с условиями изомеризации или крекинга парафинов. Еще болое важными являются наблюдения, показывающие, что олефины в условиях более высоких температур и болео длительного времени контакта с катализатором, т. е. в условиях, необходимых для крекинга парафинов, будут скорое крекироваться, чем изомеризоваться [9, 16]. Можно заключить, что высокая энергия активации, необходимая для образования ионов карбония из нормальных парафинов наряду с высокой температурой, которая обычно требуется для этого, приводит к такому отношению скоростей реакций, когда крекинг преобладает над изомеризацией. В настоящее время Облад и сотрудники [28] изучили в этом отношении два нормальных парафина и несколько изопарафинов при довольно низких температурах (от 100 до 250° С). В условиях, при которых нормальные углеводороды мало изменяются или вообще не изменяются, парафины с третичными атомами углерода интенсивно изомеризуются и крекируются, причем соотношение этих реакций меняется в широком диапазоне в зависимости от молекулярного веса и структуры. Эти результаты представляют особый случай изомеризации парафинов в сильно измененных условиях. [c.128]


    Температура. Оптимальный интервал температур для процессов гидрокрекинга составляет 360-440 °С с постепенным их повышением от нижней границы к верхней по мере падения активности катализатора. При более низкой температуре реакции крекинга протекают с малой скоростью, но при этом более благоприятен химический состав продуктов большее содержание нафтенов и соотношение изопарафин -парафин. Чрезмерное повышение температуры ограничивается термодинамическими факторами (реакций гидрирования полициклических ароматических соединений) и усилением роли реакций газо- и коксообразования. [c.328]

    Среди высших углеводородов, содержащих в молекуле [15] циклы или разветвленные цепи и длинные алкильные радикалы, наблюдается меньшая тенденция к образованию комплексов с тиомочевиной, чем среди низкомолекулярных гомологов. По-видимому, алкильная цепь оказывает препятствия и снижает стабильность. Комплексообразование с высшими н-парафинами происходит сравнительно легко, и комплексы становятся более стабильными с увеличением молекулярного веса. Однако стабильность этих комплексов такого же низкого порядка, как и стабильность комплексов, образованных низкомолекулярными изопарафинами и нафтенами. [c.208]

    В настоящее время парафиновые углеводороды с прямой цепью выделяют из нефти и ее фракций при помощи мочевины. Как наблюдал впервые в Германии Ф. Бенген [10], мочевина (карбамид) дает с к-парафинами кристаллические аддукты, в то время как разветвленные парафиновые углеводороды, а также нафтеновые и ароматические этой способностью не обладают. Эти аддукты могут быть отделены от жидкой фазы фильтрованием или центрифугированием, промыты подходящим растворителем, а затем разрушены горячей водой. В результате отделяется маслообразная смесь парафиновых углеводородов нормального строения. Так как аддукты образуются только с нормальными парафинами, а изопарафины, имеющие в общем меньшее значение для дальнейшей химической переработки, одновременно отделяются, то этот новый способ с точки зрения химической переработки содержащихся в нефтях парафинов приобретает еще большее значение. [c.20]

    Сырье (крекинг-сырье). Высокомолекулярные соединения расщепляются легче низкомолекулярных, причем парафины нормального строения отличаются наибольшей склонностью к расщеплению далее следуют изопарафины, олефины, нафтены и ароматические углеводороды. [c.16]

    Парафины, насыщенные углеводороды с прямой (к-парафины) или разветвленной (изопарафины) цепью, без кольчатых структур. [c.363]

    Б. А. Казанский, Г. С. Ландсберг, А. Ф. Платэ с сотрудниками [10] комбинированным методом в эмбенской нефти обнаружили н-парафины Сз—Се, Са и изопарафины, 2-метил-пропан, 2-метилбутан, 2-метилпентан, 3-метилгептан, 2,2-ди-метилбутан, 2,3-дпметилпептаи, 2,4-диметилпентан, 3, 3-ди.ме-тилпснтап, 3-мстилгептан, 4-метилгептан, 2,2-диметилгексан, [c.118]

    Зависимость между К и температурой изображена на рис. 5 и 6 для комплексов мочевины с и-парафинами и к-олефинами, а на рис. 7 и 8 для комплексов тиомочевины с изопарафинами и нафтенами. На этих графиках теплота образования, являющаяся мерой стабильности комплекса, выражается углом наклона линий. [c.216]

    Технические парафины состоят в основном из твердых (при комнатной температуре) парафиновых углеводородов и из небольшого количества жидких (при комнатной температуре) углеводородов другого строения. Содержание последних в белом горном воске составляет от 2 до 5% и значительно менее 1% в очищенных парафинах. Эта часть ( масло ) состоит из ароматических и неароматических углеводородов (в основном из нафтенов и, возможно, изопарафинов). Содержание масла в твердом парафине является одним из важных свойств, о котором необходимо иметь точные сведения как в процессе производственного контроля, так и при изучении парафина. [c.289]

    НИИ жидких парафинов, вероятно, зависит от более высокого содержания в них изопарафинов и ароматических углеводородов по сравнению с синтином. [c.166]

    Пластинчатый парафин содержит в основном парафиновые углеводороды С 8 — С28 наряду с небольшим количеством высокомолекулярных парафинов изостроения главным образом с одной боковой цепью. Суммарный парафин, выделяемый из сырой смолы, не обнаруживает такой поразительной однородности состава. При деструктивной перегонке происходит расщепление парафинов изостроенпя, и, следовательно, содержание парафинов в продукте снижается. Парафин иэ сырой смолы, не подвергнутой деструктивной перегонке, состоит из изопарафиновых углеводородов с 23—26 углеродными атомами в молекуле и парафиновых углеводородов нормального строения с 26— 28 углеродными атомами. После однократной перегонки парафины изостроения содержат уже только 21—24 углеродных атома, а большая часть изопарафинов распадается, давая дополнительные парафиновые углеводороды нормального строения е меньшим числом углеродных атомов. При вторичной перегонке этот процесс продолжается. Число углеродных атомов в молекулах парафинов изостроения составляет всего 18—22 и в пара фино,вых нормального строения 21—26. После третьей перегонки парафин содержит углеводороды изостроения с 20— 21 углеродным атомом и парафиновые углеводороды нормального строения с 18—25 атомами углерода. Следовательно, при деструктивной перегонке состав твердых парафинов претерпевает глубокие изменения. Содержание парафиновых углеводородов изостроения уменьшается, наряду с этим происходит и частичное разложение парафиновых углеводородов нормального строения. [c.53]


    Промышленным сырьем, в основном состоящим из парафи Нов нормального строения, является когазин, синтезируемый по методу Фишера и Тронша. Он служит наряду с строго. индивидуальными парафиновыми углеводородами наилучшим исходным материалом для сульфохлорирования. Когазин состоит примерно из 70% парафинов нормального строения, остальные 30% являются изопарафинами. В нем полностью отсутствуют циклические соединения. [c.396]

    Так, например, в 1940 г. в Германии было произведено лишь около 30 000 т плиточного парафина из бурого угля. По Внтцелю в Зейтце ежегодно производят 50 000 т парафина ТТН [43]. Этот парафин обладает, по существу, неразветвленной структурой и должен содержать не больше 10—15% изопарафинов [44]. [c.445]

    Экспериментальное изучение каталитического 1 рекинга показало, что при обычных режимах и одинаковых условиях процесса наиболее устойчивыми являются незамещенные ароматические углеводороды. За ними следуют парафиновые углеводороды. Значительно легче крекируются нафтено-ароматические и высокораз-ветвлейные парафиновые углеводороды и еще быстрее — нафтено-гые, а также заыеп1енные арома Ические углеводороды. Олефины наименее стойки в условиях каталитического крекинга. Образующиеся при расщеплении парафинов нормального строения л й-новые углеводороды легко изомеризуются и дальше часть их превращается в результате реакций перераспределения водорода в изопарафины. Скорость крекинга парафиновых и нафтеновых углево дородов быстро растет с увеличением молекулярного веса соеди-ненив. [c.34]

    Парафиновые углеводороды газойлей из смазочных масел обладают структурой преимущественно с прямой цепью или слегка разветвленной (см. главу III). Присутствие в твзрдом парафине слегка разветвленных изопарафинов со сравнительно низкой температурой плавления установлено достаточно надежно. [c.28]

    Мюллер и Пилат [23] выделяли твердый парафин из тянтелого остатка бориславской нефти, фракции которой имеют также недостаточно водорода, что указывает на присутствие циклических или нафтеновых замещающих групп. Саханен указал на то, что физические свойства этих фракций согласуются со свойствами фракций парафина из сураханской нефти соответствующих молекулярных весов (изопарафины) температура плавления их ниже, а удельные веса намного больше. Эти отклонения могут быть объяснены более высокой степенью разветвленности, по недостаточное содержание водорода с определенностью указывает на присутствие циклических групп. [c.47]

    Хлорсульфоновая кислота применялась как катализатор алкилирова- ния и для удаления изопарафинов из смесей их с м-парафинами, однако она не реагировала с двойной связью и является единственным зарегистрированным случаем среди реакций с олефинами. С пентеноМ-2 в рас творе хлороформа при 0° реакция шла с выделением хлористого водорода и образованием смеси двух изомерных пентенсульфоновых кислот [35]. [c.357]

    В 1933 г. весьма важные результаты были получены Гейером [25] при воздействия фуллеровой земли и некоторых синтетических катализаторов на пропилен при 350°, хотя Гейер не предполагал, что его результаты могут быть объяснены предложенной недавно теорией реакции с ионом карбония. Гейер быстро пропускал над катализатором пропилен и, кроме полимеров пропилена, получил олефины, парафины и изопарафины, содержащие ст пяти до восьми и больше атомов углерода. Синтетический алюмосиликат обладал приблизительно той же активностью, что и фуллерова земля, а искусственный катализатор, приготовленный из 1 % окиси алюминия на кремнеземе, обладал в 20 раз большей активностью, чем активность лучшей фуллеровой земли. [c.89]

    КОСТЬЮ, непосредственно нельзя было вычислить молярный коэффициент поглощения на структурную группу. Коэффициенты поглощения для структурных групп были вычислепы на основании экспериментальных данных по способу наименьших квадратов. Это было сделано для первичных, вторичных и третичных С—Н-групп к-парафинов, изопарафинов, нафтенов и ароматических соединений. Таким образом, были получены коэффициенты поглощения, которые могут быть использованы для вычисления числа этих групп в любом парафиновом углеводороде на основании его собственного спектра. Частота СН -группы, входящей в нафтеновые кольца, несколько выше, чем группы, входящей в парафины, что затрудняет вычисления первичных, вторичных и третичных углерод-водородных групп в смесях парафинов и нафтенов. [c.331]

    При применении катализаторов типа Фридель—Крафтса изомеризация парафинов, за исключением бутана, обычно сопровождается побочными реакциями, включающими и разрыв связи С—С. В процессе реакции синтезируются соединения, кипящие либо выше, либо ниже первоначального углеводорода. Реакции перераспределения, проходящие особенно с пентанами или более высокими парафинами, вызываются, очевидно, крекингом изо-парафиновых молекул, которые галоидом алюминия пе активируются [409]. По аналогии с реакциями, происходящими в авто-деструктивном алкилировапии, описываемый процесс является все-таки соединением деалкилирования (крекинг) и алкилирования [410], которые дают изопарафины более высокого либо более низкого молекулярного веса, чем первоначальный алкан. Возможно, проведением изомеризации под давлением водорода [411 — 413], в присутствии изобутана [412, 414], ароматики [412], нафтеновых углеводородов [412, 415—418] или гетероциклических углеводородов, таких как тиофен [419], можно свести к минимуму боковые реакции для нентанов и гексанов, но не для гептанов и более высоких парафинов. Устранение побочных реакций обычно сопровождается замедлением изомеризации, однако, прибавление олефинов уменьшает предохраняющее действие вышеприведенных агентов. Реакции изомеризации проходят через индукционный период в течение этого времени проходят незначительные реакции перераспределения [420, 421]. [c.117]

    Деструктивное алкилирование. Образование многих аномальных продуктов алкилирования, видимо, является следствием дальнейшей реакции первичных продуктов алкилирования с исходным изопарафиновым углеводородом и в меньшей стенени с другими парафиновыми углеводородами реакционной смеси. Эту побочную реакцию можно рассматривать как включающую диссоциацию первичного продукта на новые парафиновые углеводороды и олефины с последующей реакцией олефинов с исходным изопарафином и в меньшей степени новых парафинов с исходным олефином. Эта побочная реакция, которую можно назвать деструктивным алкилированием , подобна реакции автодеструктивного алкилирования нарафиновых углеводородов, которая приводит к превращению их в более или менее высокомолекулярные парафиновые углеводороды [21]. [c.316]

    Реакция изопарафиновых углеводородов со сложными эфирами. С алкилхлоридами. При взаимодействии изонарафинов с алкилхлори-дами в присутствии хлористого алюминия реакция алкилирования идет лишь в незначительной степени. Вместо этого имеет место реакция хлорводородного обмена, в результате которой нолучаются продукты, подобные тем, которые нолучаются но реакции переноса водорода при алкилировании изопарафинов олефинами. Алкилхлориды восстанавливаются в соответствующий парафин и хлористый водород, тогда как изопарафин превращается в продукт самоконденсации (и в парафины, образующиеся путем деструктивного алкилирования этого продукта) или же дает комплекс с катализатором. [c.332]

    Рафинат селективной очистки фурфуролом тяжелого газойля коксования (фр. 248-540°С коксуемость — 1.96%, содержание металлов V -ь Ni + Fe — 1.4 ppm, асфальтенов — 0.24%, серы — 0.27%, парафино-нафтенов - 38.7%) с выходом 77% [4.20] имеет низкое содержание металлов V-ь Ni + Fe — 0.59 ppm, асфальтенов — 0.05%, серы — 0.18%, коксуемость — 0.25%. Облегчается фракционный состав (225-515°С), увеличивается содержание нарафино-нафтеновых углеводородов (61.7%). В работе [4.21] также подтверждается улучшение качества получаемогр рафината (выход 63.2%) — снижение йодного числа с 31 до 24 и содержания сульфирующихся углеводородов с 44.1 до 29.5% снижается коксуемость в 7 раз и составляет 0.05%. При каталитическом крекинге рафината [4.20] выход бензиновой фракции возрастает до 55.7% (для исходного тяжелого газойля — 38.0%), а с учетом выхода рафината - 42.9% на газойль. Увеличивается доля изопарафинов в бензине с одновременным снижением выхода кокса с 6.0 до 3.7% и увеличением выхода светлых до 80.4% на рафинат и 61.9% на тяжелый газойль. [c.110]


Смотреть страницы где упоминается термин Изопарафины в парафине: [c.127]    [c.356]    [c.88]    [c.127]    [c.117]    [c.118]    [c.226]    [c.242]    [c.14]    [c.15]    [c.135]    [c.29]    [c.71]    [c.143]    [c.214]    [c.223]    [c.224]    [c.359]    [c.19]    [c.144]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.40 , c.1136 ]




ПОИСК





Смотрите так же термины и статьи:

Изопарафины (разветвленные парафины)

Изопарафины в парафине нитрование



© 2025 chem21.info Реклама на сайте