Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газификация кокса

    При газификации кокса (содержащего 96,5% С и 3,5% Н2О по массе) с водяным паром полученный водяной газ содержит 6% СО2 (по объему). Рассчитать состав полученного газа н составить материальный баланс процесса газификации на I т кокса указанного состава. Считаем, что при газификации протекают реакции  [c.28]

    Рассматриваемые в настоящей главе методы получения ЗПГ в основном базируются на аналогичных методах получения ЗПГ нз тяжелых дистиллятов, сырой и топливной нефти. Метод газификации в псевдоожиженном слое не раосматривается, поскольку он был подробно освещен в гл. 7. Наиболее подро б-но в этой главе освещены следующие технологические схемы гидрокрекинга Флексикокинг-процесс , заключающийся в термическом крекинге с одновременной газификацией кокса конверсия тяжелой нефти посредством частичного окисления кислородом и, как альтернатива, процессы полной конверсии в ЗПГ или одновременного получения ЗПГ и малосернистых сортов топлива.  [c.139]


Рис. 22. Схема установки пиролиза полу мазутов и газификации кокса в слое расплава смеси щелочей фирмы ЭССО Рис. 22. <a href="/info/1539445">Схема установки пиролиза</a> полу мазутов и <a href="/info/315468">газификации кокса</a> в <a href="/info/1322348">слое расплава</a> смеси щелочей фирмы ЭССО
    Основным источником получения смеси СО и Нг является водяной газ, получаемый газификацией кокса в генераторах водяного газа. Так как он содержит окись углерода и водород в отношении примерно 1 1, а для синтеза требуется смесь с отнои]ением 1 2, то необходимо к газу добавить водород. Последний может быть получен различными способами. [c.75]

    Хорошее соответствие между формой теоретической кривой и экспериментальными кривыми наводит на мысль, что две исходные гипотезы достаточно хорошо подтверждаются. Все же нельзя исключить возможность определенного рода компенсации. Например, при повышении влажности интенсифицируются реакции газификации кокса и смол водяным паром при этом требуется больше тепла для коксования, однако теплопроводность шихты увеличивается, что приводит к увеличению потока тепла к шихте. [c.438]

    При синтезе когазина углеводороды строятся из простейших газообразных исходных материалов — из смеси окиси углерода и водорода, взятых в отношении 1 2. Исходным материалом является главным образам водяной газ, получаемый из угля. Например, газификацией кокса с водяным паром при высокой температуре с получением смеси окиси углерода и водорода в отношении 1 1 (водяной газ). [c.70]

    Если все образующиеся в установках с коксованием в псевдоожиженном слое промежуточные дистилляты в дальнейшем направляются на переработку в ЗПГ, например на гидрогазификацию, то потребуется дополнительно водород, количество которого значительно превышает количество водорода, требуемого для десульфурации продуктов после низкотемпературной конверсии. Этот водород может быть получен из циркулирующего рабочего газа реактора, очищенного газа или посредством частичного окисления тяжелых углеводородов. Таким образом, в данной упрощенной технологической схеме объединяются в одну стадию переработка в ЗПГ сырой нефти совместно с коксом и промежуточными погонами, получаемыми в установках с коксованием в псевдоожиженном слое. Однако в этом случае требуются дополнительные расходы водорода, более сложное и громоздкое газифицирующее оборудование, значительно превышающее по массе оборудование, сэкономленное за счет исключения установки для газификации кокса. [c.147]


    Газификация кокса. До 1959 г. большая часть метанола в Советском Союзе вырабатывалась на базе водяного газа, получаемого газификацией кокса. Процесс осуществляется в газогенераторах при чередовании воздушного и парового дутья. [c.11]

    Перечисленные выше схемы производства синтез-газа для выработки метанола характеризуются различными технико-эконо-мическими показателями. Естественно, что уровень эксплуатационных и капитальных затрат на производство синтез-газа в значительной степени определяет себестоимость метанола и размер удельных капиталовложений. Так, нанример, величина затрат на синтез-газ в калькуляции себестоимости метанола-сырца составляет 40—45% при работе на природном или коксовом газе и доходит до 50% при газификации кокса. [c.16]

    Наименование статей затрат На основе сиптез-газа ацетиленовых установок (метод I) Каталитическая конверсия природного газа (метод П) Газификация кокса (метод III) [c.20]

    На основе газификации кокса............ [c.21]

    Быстрый рост мощностей по первичной переработке нефти в начале 70-х годов, сменившийся затем ускоренным строительством установок деструктивной переработки нефти и облагораживания нефтепродуктов, а также увеличение расходов на строительство очистных сооружений привели к тому, что объемы ежегодных капиталовложений в нефтеперерабатывающую промышленность в последнее десятилетие заметно превысили соответствующий показатель прошлых десятилетий (табл. 11.12). В частности, суммарные капиталовложения только на охрану окружающей среды за 1974—1985 гг. должны были составить, по некоторым зарубежным оценкам, около 20 млрд. долл. Еще большие капиталовложения потребуются для реализации намеченной программы углубления переработки нефти. Достаточно сказать, что стоимость установки каталитического крекинга мощностью 2 млн. т/год может превышать 300 млн. долл., установки гидрообессеривания остатков мощностью 1,5 млн. т/год — 360 млн. долл., установки коксования с последующей газификацией кокса (процесс флексикокинг) мощностью 3 млн. т/год — около 1 млрд. долл. Согласно некоторым оценкам, только для решения проблем, связанных с ухудшением качества нефти, нефтепереработчики США израсходовали в 1980—1985 гг. около 13 млрд. долл. В целом капиталовложения в нефтеперерабатывающую промышленность за 1981—1990 гг. составят около 33 млрд. долл. [c.30]

    Одним из решений этой проблемы была газификация кокса, например в газогенераторах с помощью пара, куда поочередно вдували воздух и пар, в результате чего получали горячие продукты горения и голубой водяной газ (окись углерода и водород). И водяной газ (известный также как карбюраторный водяной газ в случае его обогащения газом крекинга нефти), и газ полной газификации кокса в специальных газогенераторах способствовали снижению себестоимости и увеличению объема производства угольного газа [2]. [c.13]

    В верхней зоне доменной печи газификация кокса при помощи СО2 происходит главным образом в кинетической области. [c.195]

    Процесс дина-крекинг (фирма Хайдрокарбон рисёрч ) позволяет перерабатывать разнообразное остаточное сырье с высокой коксуемостью и большим содержанием металлов, азота н серы. В этом процессе (испытан на пилотной установке, строится полупромышленная установка мощностью 250 тыс. т/год) горячее сырье вводят в верхнюю часть вертикального трубчатого реактора, где оно крекируется в кипящем слое инертного теплоносителя (товарный адсорбент) в присутствии водородсодержащего газа. Образующиеся дистиллятные продукты частично или полностью могут быть направлены на рециркуляцию (табл. V. 13). Выделяющийся кокс осаждается на частичках носителя, которые непрерывно опускаются вниз, и, пройдя отпарную зону, поступают в нижнюю часть реактора. В ней происходит газификация кокса парокислородной смесью с образованием водородсодержащего газа, поток которого поднимается вверх. При этом, двигаясь через- отпарную зону, газ отпаривает с поверхности носителя адсорбированные углеводороды, а затем поступает в верхнюю часть реактора, поставляя необходимый для реакции водород. Частички носителя после выжига кокса в зоне газификации через транспортную трубу, расположенную в центре реактора, пневмотранспортом (паром или топливным газом, образующимся в процессе) подают в зону реакции. Состав продуктов процесса дина-крекинг зависит от количества рисайкла (табл. V. 14) и температуры в зонах гидрокрекинга (табл. V. 15) и газификации. В зависимости от набора продуктов температуру в зоне гидрокрекинга изменяют от 496 (почти полностью жидкие продукты) до 760 °С (преимущественно газ ), а в зоне газификации — от 927 до 1038 С. [c.123]

    Пример. Определить равновесный состав газа а) при воздушном дутье для температур газификации кокса 1000, 627 и 427° С, б) при дутье воздухом, обогащенным кислородом (содержащим 50% О2 и 50% N2), для температуры 627° С. [c.153]

    Аппараты этой группы предназначены для проведения таких практически важных процессов, как обжиг клинкера в производстве цемента, обжиг известняка, гипса и соды, газификация кокса и других видов твердого топлива, обжиг пирита (серного колчедана) в производстве серной кислоты. В последнее время два последних процесса потеряли свою значимость вследствие замены исходного сырья (например пирит в производстве серной кислоты заменен элементарной серой). [c.276]


    Предлагаются два варианта технологической схемы процесса EDS, различающиеся способами производства водорода и топливного газа [82]. В первом варианте водород получают паровой конверсией легких тазов, входящих в состав продуктов процесса, а топливный газ — при переработке остатка вакуумной перегонки жидкого продукта процесса на установке коксования с газификацией кокса ( Флексикокинг ), на которой одновременно вырабатывают добавочное количество легких жидких продуктов. Термический к. п. д. такого процесса составляет около 56%. [c.77]

    В химической промышленности в основном газифицируют кокс, чтобы газ не содержал примесей в виде продуктов сухой перегонки. До 1950—1955 г, этот процесс использовали в производствах синтетического аммиака и метанола, переведенных впоследствии на углеводородное сырье (природный газ), что позволило резко улучшить технико-экономические показатели. Газификация кокса в этих производствах почти повсеместно была прекращена. В настоящее время в связи с истощением ресурсов и ростом цен на нефть и природный газ необходимо возвращение к твердому сырью с использованием современной аппаратуры и технологии. В частности, возрастает роль газогенераторов. [c.278]

    Уже в начале XIX столетия газ, полученный перегонкой угля, использовали для освещения улиц в крупных городах мира. Первоначально его получали в процессе коксования, но уже к середине века в промышленных масштабах была осуществлена безостаточная газификация кокса и угля в циклических, а затем и в непрерывно действующих газогенераторах. В начале текущего столетия газификация угля была распространена во многих странах мира и прежде всего для производства энергетических газов. В СССР к 1958 г. работало около 2500 газогенераторов различных размеров п конструкций, которые обеспечивали производство около 35 млрд. м в год энергетических и технологических газов из твердых топлив разных видов [93). Однако в связи с последовавшим быстрым ростом добычи и тран-спорта природного газа объемы газификации твердого топлива как у нас в стране, так и за рубежом значительно сократились. [c.89]

    ГОСТ 10089-62 Сущность метода заключается в газификации кокса в струе двуокиси углерода при температурах 950-1100°С. Оценка реакционной способности производится по величине констант скорости реакции. [c.75]

    КСО-141 Сущность метода заключается в газификации кокса в струе двуокиси углерода при температурах 1000°С в течение 100 минут с последующим расчетом весового остатка образца в %. [c.76]

    Углеводородный газ на производство водорода Водородсодержащий газ Сероводород в растворе МЭА Топливный газ на нужды установки Кокс на газификацию Кокс выжигаемый Потери Итого [c.267]

    Газы до С4 включительно Газойли коксования, °С н. к. — 160 160—524 Газ от газификации кокса Кокс [c.261]

    В промышленности и в природе многие важные процессы протекают при температурах, отличающихся от стандартной (298 К). Например, газификация кокса происходит вблизи 1000°С, процессы образования магмы в земной коре или вулканах происходят при еще более высоких температурах. Температура оказывает существенное влияние на процессы флотации и обогащения руд, поскольку они обусловлены химическим взаимодействием между фазами (см. гл. XVI). [c.48]

    Учитывая высокое содержание серы в порошкообразном коксе, вызывающее значительное образование диоксида серы в продуктах сгорания, было предложено этот кокс газифицировать. В зарубежной литературе процесс термоконтактного крекинга, совмещенный с газификацией кокса, называют флексикокинг. [c.33]

    При отсутствии метана он может быть заменен коксовым газом, метан которого превращается в генераторе в окись углерода и водород. Средний состав коксового газа может быть принят водород — 53%, метан —25%, азот—12%, окись углерода —6%, углекислота — 2,5% и этилен — 2 %- При соотаетствующей дозирозке коксового газа н впооредственно из генератора в этом случае может быть получен газ, содержащий окись углерода и водород в соотношении 1 2. Примерно 40% водорода получается при этом газификацией кокса, а остальные 60% за счет коксового газа [19]. [c.79]

    Подсчитать температуру газификации кокса, если в генератор м 100 воздуха вдувают 10 водяного пара. Содержание углерода в кокп принять равным 100%, а потери тепла в окружающее пространство 10%. [c.318]

    На комплексе Syn rude технологическая схема переработки битума в целом аналогична схеме предприятия Sun or . Отличие заключается в том, что вместо замедленного коксования здесь используется коксование в псевдоожиженном слое с последующей газификацией кокса по технологии процесса <"Флексикокинг . При этом выход синтетической нефти на исходный битум достигает 85% (масс.) при выходе балансового кокса 10% (масс.). Преимуществом Флексикокинга , помимо более высокого выхода жидких продуктов, является возможность превращения кокса в газ с теплотой сгорания 3,7—4,8 МДж/м . [c.103]

    Подсчитать температуру газификации кокса, если в генпратор вдувают воздух, обогащенный кислородом, с содержанием 40% О2. Припять, что,, весь углерод сгорает до СО, а содержание С в коксе равно 100%. При расчете принять также, что уголь подходит к зоне горения с температурой 2000°С, а потери тепла составляют 42%. [c.318]

    VI-5. Льюис, Джилиленд и Пекстон получили следующие данные о влиянии парциального давления кислорода на скорость газификации кокса при SIO  [c.198]

    Газификация кокса, угля и нефти в энергетических целях имеет в настоящее время весьма ограниченное применение. Кроме нескольких предприятий в изолированных районах США, прекраг щено производство водяного газа. Это вызвано низкой калорийностью искусственного и водяного газа (соответственно 1150— 1600 и 2700 ккал м ) и невыгодностью с практической точки зрения смешения их с высококалорийным (9300 ккал1м ) природным газом. Более калорийный газ для смешения с природным (2700— 8900 ккал1м ) может быть получен крекингом углеводородного сырья в присутствии водяного пара. [c.321]

    Положительный опыт использования раствора поташа в качестве ингибитора коксообразования пирозмеевиков нашел широкое распространение на многих этиленовых установках ЭП-60, где избыточное содержание СО н СО2 в пирогазе, воз-никаюш,ее в результате газификации кокса, не мешает производству целевых продуктов (например, в производстве син-тезспирта). [c.167]

    Широкого строительства установок глубокой переработки остатков (гидрокрекинга и др.) в ближайшие годы во Франции не намечается из-за недостаточной отработя11ности технологии этих процессов, а главное из-за необходимости огромных капиталовложений. Например, капиталовложения в установку гидрокрекинга гудрона мощностью 2 мл . т/год составляет 3—5 млрд. фр., а в установку флексикокинг (коксование гудрона в кипящем слое с последующей газификацией кокса) мощностью 1,6 млн. т/год по сырью — 6,3 млрд. фр., или примерно втрое больше, чем в обычный НПЗ мощностью 8 млп. т/год. [c.70]

    Фирмой ЭССО запатентован в Японии другой процесс пиролиза полумазутов и газификации угля и кокса в расплавах смесей ш,елочей, осуществляемый по технологической схеме, аналогичной схеме фирмы Келлог . Отличительной особенностью процесса фирмы ЭССО является одновременное осуществление двух реакций — пиролиза полумазутов и газификации кокса в сопряженно работаю- [c.91]

    Дйиа-крекиш позволяет перерабатывать разнообразное остаточное сырье с высокой коксуемостью и большим содержанием метгллов, азота и серы. Процесс проводится в трехсекционном реакторе с псевдоожиженным слоем и внутренней рециркуляцией инертного микросфе-рического адсорбента. В верхней секции реактора при температуре примерно 540 С и давлении около 2,8 МПа осуществляется собственно гидропиролиз тяжелого сырья. Носитель с осажденным коксом через зону отпаривания поступает в нижнюю секцию реактора, где проводится газификация кокса парокислородной смесью при температуре около 1000 С с образованием водородсодержащего газа (смесь СО и Нг). Последний через отпарную секцию поступает в верхний слой теплоносителя, обеспечивая необходимую для протекания реакций гидропиролиза (гидрокрекинга) концентрацию водорода. Таким образом, в данном процессе гидротермолиз сырья осуществляется без подачи водорода извне. Регенерированный теплоноситель-адсорбент далее пневмотранспортом подается в верхнюю секцию реактора. [c.80]

    Процесс термоконтактного крекинга с получением кокса (флюид-кокинг) освоен на ряде нефтеперерабатывающих заводов США, Канады и Мексики. Трудности с реализацией пылевидного кокса обусловили дальнейшее развитие этого процесса путем введения в схему установки процесса газификации кокса с выработкой низкокалорийного топливного газа. Этот процесс, получивший название флексикокинг , впервые был проверен в промышленном масштабе в Японии, где с 1976 г. успешно работает установка мощностью 1 млн т/год позднее были [c.78]

    Помимо того, газ содержит меньше Hj, СО и СОj. При выгрузке нет пережженного кокса. Коксом считают и твердый остаток при пиролизе, который составляет 2—5% общего кокса. Вполне вероятно, что это систематическое расхождение с батареей коксовых печей Мариено объясняется тем, что реакция газификации кокса водяным паром протекает менее интенсивно в реторте Иенкнера вследствие меньшей продолжительности контактирования газа с горячим коксом. Расхождение с результатами, полученными на батарее коксовых печей, возможно, может быть уменьшено посредством футеровки пиролизера огнеупорным кирпичом. [c.481]

    Висбрекинг, термический крекинг, замедленное коксование, периодическое коксование, термоконтактный крекинг без газификации кокса (флюид-кокинг) и с газификацией кокса (флексикокинг) [c.72]

    Термокон- тактный крекинг в кипяшем слое с газификацией кокса (флексикокинг) Мазут Гудрон Асфальт деасфальтизации Тяжелые и битуминозные нефти Газы углеводородный, топливный (или синтез-газ), бензин, легкий и тяжелый газойль То же Тоже Тоже [c.185]

    Термический гидрокрекинг ( Дина-крекинг ). Процесс термического крекинга в присутствии водорода позволяет увеличить выход светлых нефтепродуктов и одновременно понизить содержание в них серы. Этот процесс, предложенный фирмой Хаидрокарбонрисёрч [228], обеспечивает переработку разнообразного остаточного сырья с высокой коксуемостью и большим содержанием металлов, азота и серы. В процессе горячее сырье вводится в верхнюю часть вертикального трубчатого реактора и подвергается преврашению в кипяшем слое инертного теплоносителя в присутствии водородсодержащего газа. Образующиеся дистиллятные продукты частично или полностью могут быть направлены на рециркуляцию. Выделяющийся кокс осаждается на частичках носителя, которые непрерывно опускаются вниз и, пройдя отпарную зону, поступают в нижнюю часть реактора. В ней происходит газификация кокса парокислородной смесью с образованием водородсодержащего газа, поток которого поднимается вверх. При этом, двигаясь через отпарную зону, газ отпаривает с поверхности носителя адсорбированные углеводороды затем он поступает в верхнюю часть реактора, поставляя необходимый для реакции водород. Частички носителя после выжига кокса в зоне газификации подаются через транспортную трубу в зону реакции, расположенную в центре реактора. [c.215]


Смотреть страницы где упоминается термин Газификация кокса: [c.245]    [c.17]    [c.22]    [c.259]    [c.39]    [c.55]    [c.92]    [c.103]    [c.226]    [c.444]   
Водород свойства, получение, хранение, транспортирование, применение (1989) -- [ c.317 , c.323 ]

Технология связанного азота Синтетический аммиак (1961) -- [ c.41 , c.70 , c.80 , c.82 ]

Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.126 ]

Основы технологии органических веществ (1959) -- [ c.56 , c.81 ]

Основы технологии органических веществ (1959) -- [ c.56 , c.81 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Кокс Сох

Коксо газ



© 2025 chem21.info Реклама на сайте