Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбция схемы процессов, установок

    Схема процесса — типичная схема абсорбции. Газ поступает в тарельчатый или насадочный абсорбер, в который сверху противотоком подается раствор щелочи. Насыщенный раствор ш,е-лочи подогревается в теплообменнике до 100 С, подается в регенератор, где дополнительно нагревается водяным паром. В результате нагрева в присутствии водяного пара меркаптаны десорбируются и вместе с парами воды поступают в дефлегматор. Пары воды конденсируются, а меркаптаны подаются на установку получения серы либо в виде готового продукта на склад. Регенерированный раствор щелочи после рекуперации теплоты возвращается в цикл. [c.198]


    Поскольку абсорбция этилена протекает с выделением тепла, сырье предварительно охлаждают маточным раствором в теплообменниках 1. Далее сырье охлаждают в кристаллизаторах емкостного типа I ступени 3 путем прямого контакта с жидким этиленом. Из кристаллизаторов газообразный этилен, отводят на холодильную установку. В схеме процесса имеется от 5 до 7 последовательно включенных кристаллизаторов, которые позволяют получать кристаллы крупного размера. Далее суспензию и-ксилола подают на центрифугу I ступени 5 получающийся маточный раствор и осадок после плавления стабилизируют в десорберах 7. Отходящий сверху десорберов этилен направляют на холодильную установку. [c.118]

    Установки первого типа оснащены реакционными камерами внутренним диаметром 4,6 м и нагревательными печами шатрового типа, переделанными в процессе эксплуатации на двухпоточные по вторичному сырью. Принципиальная технологическая схема такой установки показана на рис. 1.3. На установке имеются узлы абсорбции и стабилизации бензина, предусмотрено также получение керосина, газойля, печного топлива, тепло которых используется для нагрева турбулизатора. Четыре камеры работают [c.11]

    По технологическому оформлению процесс экстракции сходен с абсорбцией. На рис. 54 показана схема экстракционной установки, используемой в тех случаях, когда растворитель имеет большую плотность, чем разделяемые жидкости, и очень мало растворим в легких компонентах смеси. Исходная разделяемая смесь вводится в среднюю, растворитель—в верхнюю часть экстракционной колонны. При контакте с разделяемой смесью растворитель экстрагирует часть компонентов, образующийся раствор (экстракт) стекает по насадке и отводится из колонны снизу. Экстракт направляют на ректификацию, в процессе которой выделяются растворенные компоненты исходной смеси. Регенерированный растворитель возвращают на орошение экстракционной колонны. При дополнительной ректификации [c.160]

    На рис. 1.5 приведена технологическая схема процесса выделения ацетилена 28]. Исходная этан-этиленовая фракция (ЭЭФ) поступает с >тиленовой установки под давлением 2 МПа в первую колонну—абсорбер высокого давления 1, в его верхнюю часть подают /.МФА, который поглощает ацетилен и частично этан и этилен. С верха абсорбера отводят очищенную от ацетилена ЭЭФ и направляют в колонну разделения фракции С. этиленовой установки. Насыщенный ДМФА из куба абсорбера 1 проходит ряд теплообменников, частично дегазируется и дросселируется в десорбер 6. Сконденсированная ЭЭФ используется как флегма для абсорбера 1 (в дополнение к встроенному дефлегматору) для отвода тепла, выделяющегося при абсорбции. Десорбер 6 служит для отгонки растворенных в ДМФА этилена, этана и ацетилена. Регенерированный ДМФА из куба де-сорбера 6 проходит через ряд теплообменников и возвращается на орошение в абсорбер 1. С верха десорбера 6 отходит обогащенный ацетиленом газ, который через холодильник поступает [c.29]


    На фиг. 1 представлена схема процесса. Исходный газ при давлении 20 атм и при содержании 30% (объемных) углекислоты, подвергается двухступенчатой промывке охлажденным метиловым спиртом в абсорбционной колонне а. В первой ступени метиловый спирт в значительной степени обогащается углекислотой и после дросселирования до- атмосферного давления поступает в десорбционную колонну б, где вторично дросселируется до давления ниже атмосферного. Углекислота при этом улетучивается. За счет теплоты испарения СОг метиловый спирт охлаждается от —20 до —75° С. Этим компенсируется теплота абсорбции СОг. Затем метиловый спирт перекачивается в колонну а, где его температура за счет поглощения углекислоты вновь повышается до —20° С. Во второй ступени промывки из очищаемого газа удаляются остатки углекислоты и сероводород. Метиловый спирт восстанавливают в ректификационной колонне 0. Уходящие из установки холодные газы (очищенный и отбросной) используются в теплообменнике для охлаждения исходного газа перед его очисткой. Для компенсации потерь холода с недорекуперацией (из-за несовершенства [c.180]

    Новым в процессе получения синтетической соляной кислоты является совмещение реакций синтеза и абсорбции хлористого водорода в одном аппарате — печи-абсорбере. Схема такой установки представлена на рис. 36. Хлор и водород поступают в горелку 4, где хлор сжигается в избытке водорода. Конец трубки горелки помещен в верхнюю часть кожуха печи-абсор-бера 1. В кожух печи, изготовленный из кислотостойкого материала, вставлен графитовый теплообменник 2. Для обеспечения равномерного образования пленки жидкости на поверхности теплообменника последний обмотан специальной сеткой, исключающей возможность образования струй жидкости. Вода, необходимая для абсорбции хлористого водорода, подается сверху через гидравлический затвор, находящийся в верхней части кожуха печи-абсорбера, и протекает прямотоком с хлористым водородом по кольцевому пространству между кожухом печи и теплообменником. Холодная концентрированная соляная кислота вытекает через нижний спускной штуцер 8, а остаточные (прочие) газы выходят кверху через трубку 9. [c.460]

    Выходящие из реактора газы немедленно охлаждали и промывали холодной водой для удаления хлористого водорода. Хлористый аллил можно абсорбировать из смеси с пропиленом многими органическими растворителями на работавшей в США опытной установке для этой цели применяли керосин. Как обычно, устанавливали две колонки, из которых одна служила для абсорбции хлористого аллила, а в другой—ректификационной—хлористый аллил отгоняли от растворителя. Вследствие низкой температуры кипения хлористого аллила газы по выходе из реактора охлаждали до 0° или даже до —10° С. На рис. 20 показана схема процессов хлорирования и выделения хлористого аллила. [c.157]

    Абсорбция двуокиси углерода водой имеет промышленное значение для очистки некоторых газов высокого давления, в частности применяемых для синтеза аммиака. Однако этот процесс, по-видимому, в значительной степени вытесняется другими, более эффективными процессами очистки газа, в которых применяются растворители с большей поглотительной емкостью, например моноэтаноламин и карбонат калия. Технологическая схема простого процесса водной абсорбции показана на рис. 6. 1. В простейшем варианте установка состоит только из абсорбера, работающего при повышенном давлении, десорбера, в котором вследствие снижения давления из воды выделяется двуокись углерода, и насоса для подачи воды в верх абсорбера. На схеме показана также рекуперационная турбина, позволяющая использовать часть энергии путем снижения давления жидкости и последующего расширения абсорбированного газа наличие специальной колонны для выделения газов обеспечивает более полную десорбцию СО2 из воды, чем может быть достигнуто в простом десорбере. При такой схеме процесса в десорбере можно поддерживать некоторое среднее давление, получая при этом газ с достаточно высоким содержанием горючих компонентов, используемый в качестве топливного газа с низкой теплотой сгорания. [c.116]

    Рассмотрим особенности синтеза разнородных (гетерогенных) схем ректификации нефтяных смесей. В практике нефтегазопереработки такие схемы встречаются на установках каталитического риформинга бензиновых фракций и используются они для выделения ароматических углеводородов из катализатов риформинга. Гетерогенные схемы разделения включают несколько разнородных процессов обычную ректификацию, экстрактивную и азеотропную ректификацию, абсорбцию или экстракцию. [c.144]

    На ранее построенных установках АТ и АВТ не было очистки компонентов светлых нефтепродуктов выщелачиванием, стабилизации бензиновых фракций, абсорбции газов и др. Для этих процессов сооружались самостоятельные установки на отдельной площадке. В результате усовершенствования технологии первичной переработки нефти и соответствующей аппаратуры, а также внедрения автоматизации начали сооружать на АТ или АВТ дополнительные блоки — электрообессоливания,-стабилизации бензиновых фракций, выщелачивания компонентов светлых нефтепродуктов, абсорбции и десорбции жирных газов. Таким образом, индивидуальные технологические установки соединились в комбинированные установки первичной переработки, называемые (независимо от числа технологических узлов и процессов) комбинированными атмосферно-вакуумными установками (ABT)j Объединенные в единую технологическую схему установки электрообессоливания, электрообезвоживания и атмосферно-вакуумной перегонки носят название ЭЛОУ —АВТ. Достоинство таких установок — более рациональное использование энергетических ресурсов АВТ. [c.24]


    На современных комбинированных установках АВТ имеются блоки стабилизации, абсорбции-десорбции и вторичной перегонки широкой бензиновой фракции. Во всех этих блоках процесс ректификации, или фракционирования, осуществляется в ректификационных колоннах. Эти технологические блоки на установках АВТ добавляются в зависимости от углеводородного состава перерабатываемой нефти и от назначения их в схеме переработки по заводу в целом. На рис. 26 приводится типовая схема технологической связи между стабилизатором и фракционирующим абсорбером на установках АВТ. [c.53]

    Керосиновая фракция с 31-ой или 29-ой тарелок основной колонны поступает в первую секцию отпарной колонны 9. Пары из отпарной колонны 9 направляются в основную колонну 8 под 30-ую тарелку. С низа первой секции отпарной колонны 9 фракция прокачивается через холодильник в мерники. С 14-ой тарелки основной колонны 8 во вторую секцию отпарной колонны 9 отводится флегма дизельного топлива. Пары из этой секции возвращаются под 16-ую тарелку основной колонны, а дизельное топливо с низа отпарной колонны насосом через теплообменники и холодильники откачивается в мерники. В низ основной колонны 8 и в отдельные секции отпарной колонны 9 подается перегретый водяной пар. Мазут — остаток основной ректификационной колонны 8 забирается горячим насосом и прокачивается через печь 13 в вакуумную колонну 12. В случае временного отключения вакуумной части мазут направляется на другие процессы, в частности на термический крекинг. Остальные технологические узлы установки — вакуумная перегонка мазута, стабилизация, абсорбция и выщелачивание компонентов светлых продуктов — работают по описанной выше схеме установки АВТ производительностью 1,0 млн. т/год. Главным аппаратом установки является основная ректификационная колонна диаметром 3,8 м с 40 тарелками желобчатого типа. Из них шесть расположены в отгонной части, а 34 в концентрационной. В колонне осуществлено два циркуляционных орошения с отбором флегмы. [c.88]

    Принципиальная схема поточности на комбинированной установке ЭЛОУ — АВТ со вторичной перегонкой бензина производительностью 3 млн. т/год нефти представлена на рис. 53. На этой установке скомбинировано самое большое число технологически и энергетически связанных процессов первичной перегонки нефти ЭЛОУ, атмосферная перегонка нефти, вакуумная перегонка мазута, выщелачивание компонентов светлых нефтепродуктов, абсорбция и десорбция жидких газов, стабилизация легких бензинов, вто- [c.142]

Рис. У.З. Схема установки для исследования процесса абсорбции с применением ЭВМ Рис. У.З. <a href="/info/13990">Схема установки</a> для <a href="/info/25656">исследования процесса</a> абсорбции с применением ЭВМ
    Конструкция абсорбера, схема управления потоками жидкости относительно движения потока газа и возможный диапазон изменения скорости газа, плотности орошения и высоты пенного слоя позволяют исследовать процесс абсорбции на установке при довольно большом количестве вариантов различных режимов работы абсорбера. Ниже приведен диапазон изменения основных параметров на установке  [c.228]

    Особенности процесса низкотемпературной масляной абсорбции для извлечения пропан-бутановой фракции и меркаптанов с использованием в качестве абсорбента углеводородной фракции 150 - 200 °С и технологическая схема установки подробно рассмотрены в гл. 2 на примере установки, действующей на третьей очереди Оренбургского ГПЗ. [c.140]

    Далинейшее улучшение процесса разделения катализата риформинга достигается при использовании холодной сепарации газа на I ступени и абсорбции газа стабильным катализатором на II ступени [23]. Принципиальная схема такой установки приведена на рис. 1У-24. Катализат охлаждают и частично конденсируют при 120 °С и направляют в I ступень сепарации, где под давлением 0,97 МПа он разделяется на газовую и жидкую фазы. Газовую фазу компримируют до 1,4 МПа и при 160 °С подают на разделение в абсорбер, на верх которого подают стабильный катализат при 38°С. Разделение катализата по данной схеме обеспечивает получение водородсодержащего газа с концентрацией 81,2% (об.) Нг при снижении зисплуатационных затрат по сравнению со схемой двухступенчатой сепарации на 10—15%. В табл. IV.13 приведены состав и параметры основных потоков блока разделения по схеме, изображенной на рис. 1У-24, на основе которых может быть рассчитан материальный баланс процесса. [c.234]

    Первый тип процессов можно назвать адсорбционно-абсорб-ционным. На стадии адсорбции НаЗ поглощается цеолитом, на стадии десорбции он переходит в поток регенерационного газа. Концентрация НгЗ в регенерационном газе становится достаточной для процессов химической абсорбции. Таким образом, т за-диционная схема процесса химической абсорбции кислых газов дополняется адсорбционной установкой, что, естественно, удорожает процесс очистки. С учетом невысоких объемов производства серы процесс становится для газовой промышленности мало экономичным. Пределом применимости этих процессов, видимо, может служить цена серы, которая должна быть несколько ниже мировой. [c.196]

    На рис. 172 показана припципиальпая технологическая схема процесса абсорбционной очистки природпьтх газов от HoS и СО. с помощью аминов. В этом процессе HjS извлекается из газа за счет химической реакции, которая становится обратимой при нагревании, а Oj удаляется в основном за счет физической абсорбции раствором. Схема процесса подобна схеме гликолевой осушки газа, и даже многие проблемы, возникающие при сероочистке (папример, вспенивание, коррозия), аналогичны проблемам гликолевой осушки. Однако эксплуатировать установки сероочистки гораздо труднее, чем установки гликолевой осушки. [c.268]

    Двухблочные установки замедленного коксования подразделяются на несколько типов. Установки первого типа оснащены реакционными камерами внутренним диаметром 4,6 м и нагревательными печами шатрового типа (которые в процессе эксплуатации переделаны на двухтопочные по вторичному сьфью). Принципиальная технологическая схема такой установки показана на рис. 18. На установке имеются узлы абсорбции и стабилизации бензина, предусмотрено также получение керосина, газойля, печного топлива, тепло которых ис-пользуется для нагрева турбулизатора. Четыре камеры работают попарно, независимо друг от друга, поэтому каждую пару камер можно отключить на ремонт, не останавливая всей установки. Для извлечения и транспортирования кокса применяется более усовершенствованное оборудование [ 100-1021. [c.63]

    Цех, построенный в Селби (Калифорния), мощностью 20 т/сут (ЗОг) рекуперирует 99% оксида серы (IV) из отходящих газов агломерационной машины фирмы Дуайт-—Ллойд, содержащих 5% 502. На 1 кг выделенного оксида расходуется 0,5 г диметиланилина, 16 г карбоната натрия и 18 г серной кислоты, а также 1,1 кг пара, 0,52 МДж энергии и 8,2 кг/ч охлаждающей воды (18°С). Технологическая схема процесса приведена на рис. 111-11. Как абсорбер, так и стриппинг-колонна были выполнены в виде колпачковых тарельчатых колонн, в каждой колонне производится несколько операций, например абсорбция содой и промывка кислотой, что снижает общую стоимость установки. [c.121]

    На рис. 7 представлена принципиальная технологическая схема процесса получения бензола из жидких продуктов пиролиза бензина на установке мощностью 450 тыс. т этилена в год. Промышленная установка выделения бензола из жидких продуктов пиролиза бензиновых фракций состоит из трех основных узлов гидродеал-килирования (реакторный блок), ректификации бензола, абсорбции бензола и очистки отходящих газов. [c.51]

    Метанол (процесс ректизол , см. схему на стр. 670сл.) целесообразно применять в случае проведения абсорбции при низких температурах под давлением (свыше 10 бар). Несмотря на использование искусственного холода, расход энергии в процессе ректизол ниже, чем при водном методе. По этому методу получают очищенный газ с очень малым содержанием водяного пара и его целесообразно применять для одновременного удаления вместе с СО3 и других примесей (H3S, высшие углеводороды). Недостатки процесса—сложность схемы, дороговизна установки и большие потери поглотителя вследствие значительного давления пара даже при низких температурах. [c.678]

    Как ВИДНО ИЗ приведенной на рис. 56 схемы маслоабсорбциопной установки, между абсорбером и десорбером устанавливается абсорб-ционно-отпарная колонна, так как в процессе абсорбции вместе с целевылш углеводородами происходит поглощение абсорбентом метана и этана, присутствие которых вызывает ухудшение конденсации и потери нестабильного бензина, получаемого при десорбции. [c.132]

    Давление абсорбции 7,2 МПа. Процесс переработки осуществляется следующим образом вначале пз газа извлекается сероводород, затем на другой установке - СО2. Выделенная углекислота, содержащая 99 % СО2, около 1 % метана и менее 0,00001 % сероводорода, комиримируется до 13,8 МПа для закачки в иласт. На рис. 4.51 представлены схемы процесса выделения Н25 и СО2 из газа [152]. [c.342]

    Этот процесс был разработан совместно фирмами Хемише индустри в Базеле и Металлгезельшаф во Франкфурте-на-Майне. В качестве абсорбента применяется смесь ксилидина с водой в соотношении приблизительно 1 1. Смесь, подаваемая на верх абсорбера, представляет двухфазную систему, но при абсорбции 30 а образуется водорастворимый сернистокислый ксилидин. Насыщенный абсорбент, выходящий с низа абсорбера, представляет собой водный раствор сернистокислого ксилидина. Десорбция для выделения 30 а проводится нагревом. К раствору добавляют карбонат натрия для превращения образовавшегося в небольших количествах сернокислого ксилидина в сульфат натрия. Схема процесса [8] приведена на рис. 7.3. Эта установка служит для очистки газов из людных конвертеров содержание 30а в газах изменяется от 0,5 до 8,0%, составляя в среднем 3,6%. Газы, поступающие на установку очистки, сначала обеспыливают в электрофильтрах, после чего пропускают последовательно через два насадочных абсорбера, где контактируются со смешанным ксилидин-водным абсорбентом. Из отходящего газового потока пары ксилидина улавливают отмывкой разбавленной серной кислотой, после чего газы, содержащие 0,05—0,1 % 30а, выбрасываются в атмосферу. Насыщенный абсорбент с содержанием SO а [c.145]

    Этот процесс был разработан на металлургическом заводе Коминко ( Консолидейтед майнинг энд смелтинг компани ) в Трейле, Канада, для абсорбции 80з из отходящих газов различных процессов цветной металлургии и сернокислотной установки. Процесс основывается на абсорбции ЙОз водным раствором сульфита аммония и выделении (десорбции) сернистого ангидрида добавкой серной кислоты к раствору с образованием сульфата аммония в качестве побочного продукта. Этот процесс использован также для очистки отходящих газов сернокислотного производства на заводе Олин-Матисон в Пасадене. Схема процесса в том виде, в котором он осуществлен на заводе в Пасадене, представлена на рис. 7.8. Полузаводские исследования выделения 50з из дымовых газов от сжигания ископаемых углей при помощи такого же процесса проводились и другой организацией [30]. [c.153]

    Ц. Схема процесса дана на рис. 2-19 [l78, 79 . После сжигания хлорорганических отходов в циклонной топке 1 газ, содержащий НС1, впрыскивается в жидкость и поступает в аппарат 2 для погружного охлаждения до 50-100 °С. Последующие стадии выделения НС1 заключаются в абсорбции его водой в абсорбере 4 и в экстракционной дистилляции в колонне 11 в присутствии серной кислоты или хлорида кальция. Полученная 35%-ная соляная кислота собирается в сборнике. 9. Установки 4ирмы Ниттету имеют производительность 18- [c.44]

    Разработана схема промышленной установки. Абсорбция сероводорода производится 10%) раствором моноэтаноламина в двухполочном пенном абсорбере при соотношении жидкостного и газового потоков 1 200. Очищенный газ поступает в газгольдер, а рабочий раствор — на отгонку сероводорода. Процесс десорбции осуществляется острым паром из расчета 250 кг/ж раствора в шестиполочном пенном десорбере (рабс = 6 ат, / = 150°С). Отреге-нерированный раствор возвращается в систему орошения пенного [c.42]

    На рис, 7,11 приведена упрощенная технологическая схема процесса Клауспол-150, Технологический газ, приходящий из установки Клауса, охлаждается в котле-утилизаторе до 250 С, а затем в противотоке с отходящим газом, из которого удалена сера, до 180 С. После этого он направляется в самую нижнюю из трех промывных зон абсорбера. Посредством регулировки величины pH в этих трех промывных зонах устанавливается оптимальное для абсорбции содержание сульфитов в водном растворе. Нижняя ступень работает с относительно высокой концентрацией сульфитов с тем, чтобы количество раствора, [c.222]

    Разделение газов по технологической схеме абсорбционной установки, предназначенной для извлечения из газа в качестве целевого продукта фракции СзНз (рис. IV.8), происходит следующим образом. Сырой газ поступает на установку при температуре 30—40° С. Пройдя систему сырьевых теплообменников, газ охлаждается до температуры процесса абсорбции и поступает в фазный разделитель. На вход сырьевых теплообменников подают ингибитор гидратообразования для связывания сконденсированной влаги, например 70—80%-ный раствор ДЭГа. Из фазного разделителя газ подают на абсорбцию, конденсат — на деэтанизацию, а насыщенный раствор ДЭГа — на регенерацию. Сухой газ после абсорбера контактирует с тощим абсорбентом в испарителе, где он насыщается главным образом легкими углеводородами — этаном и метаном при соответствующей температуре. Предварительно насыщенный абсорбент поступает далее в абсорбер, а сухой газ после сырьевых теплообменников отводят с установки. [c.90]

    Более предпочтительной является схема с установкой всех ступеней ДКС перед осушкой. В данном варианте предлагается увеличить давление газа, поступающего на осушку (а следовательно, и давление самого процесса абсорбции) за счет его компримирования в две ступени путем последовательного сжатия сначала на 1 ст. ДКС, а затем на 2 ст. ДКС, которую для этого необходимо переобвязать с выходной линии осушенного газа на поток газа, выходящего после первой ступени ДКС. В зимний период эксплуатации это приведет к дополнительному выпадению влаги перед абсорбером осушки, а следовательно, к улучшению качества подготовки газа. При летнем режиме эксплуатации после сжатия как в одну (дор = 4,2 МПа), так и в две ступени (до р = 5,6 МПа) температура газа, поступающего на осушку, может достигать 35 °С. В результате его начальное влагосодержание за счет дополнительного компримирования не изменится и будет максимальным, т.е. равно влагосодержанию газа при давлении входа на УКПГ, которое ниже давления выхода с 1 ст. ДКС. Однако в этот период положительный эффект от применения второй ступени сжатия газа может быть получен за счет повышения степени извлечения влаги гликолем, которая возрастает с увеличением давления процесса абсорбции. Это даже при высокой температуре газа позволит снизить температуру точки росы на 3-4 °С по сравнению с исходной технологией. [c.17]

    Схема регенерации кетон-бензол-толуоловых растворителей, в которых в качестве кетона используют метилэтилкетон, аналогична описанной выше. При этом несколько изменяется режим процесса в сторону повышения температуры на первых ступенях отгона, поскольку температура кипения металэтилкетона выше, чем ацетона (79,6° при 760 мм рт. ст. против 56,1° для ацетона), г Если на депарафинизационной части установки применяют / МЭК в тех случаях, когда нельзя пользоваться влажным растворителем, операция осушки растворителя усложняется вследствие затруднений с получением безводного МЭК. Эти затруднения вызываются тем, что МЭК с водой образует азеотропную смесь, близкую по составу к насыщенному раствору воды в жидком МЭК. Так, количество воды в этой азеотропной смеси составляет 11,0%, а растворимость воды в жидком МЭК при 20" равна 9,9%. При такой близости составов азеотропной смеси и насыщенного раствора нельзя разделять эту азеотропную смесь при помощи процесса, рассмотренного для регенерации дихлор-этап-бензолового растворителя. Поэтому для выделения МЭК применяют другие методы разделения, в частности, орошение паров азеотропной смеси сырьем, поступающим на депарафинизационную часть установки, с целью абсорбции МЭК, хорошо растворимого в нефтяных продуктах. Возможна осушка смеси МЭК с бензолом и толуолом путем вымораживания влаги. [c.244]

    Целесообразность и необходимость использования водородсодержащих газов дегидрирования бутана и бутилена для гидрирования мо-торнш топлив на установках гидроочистки очевидны. До настоящего времени отсутствовала схема использования этих газов. Нами предпринята попытка разработки такой схемы, которая изображена на рисунке и. заключается в следующем водородсодержащий газ I поступает с нефтехимкомбината на компрессор ЦК-1 и под давлением 14 ат поступает в абсорбер К-1 для удаления и и частично и Абсорбентом служит гексан. Процесс абсорбции ведется при температуре 35-40°С и давлении 10-14 ат. [c.168]

    Скорость абсорбции увеличивается в присутствии различных солей, причем наиболее эффективными катализаторами являются сернокислая и хлористая соли закиси меди. В опытах при низких температурах катализаторы брались в количестве 1—5%. В присутствии 5% закиси меди этилен быстро абсорбируется 95%-ной серной кислотой при температуре 40°, образуя этилсерную кислоту с выходом 94%. В случае применения ртутного катализатора и соли закиси меди абсорбция происходит даже при более низких температурах. Эффективным катализатором является также сернокислая соль двухвалентной меди [180а]. В общей схеме [1806] удаления этилена из светильного газа путем абсорбции этилена кислотой крепостью 66° Вё в качестве катализатора предложено употреблять смесь 1% ртути с ванадиевой, урановой или молибденовой кислотами. В присутствии пенообразующего вещества каталитическое действие оказывают также коллоидное серебро и серебряные соединения [181]. Применяя катализаторы, можно вести абсорбцию при температуре реакционной смеси не выше 35° и таким образом избежать образования изэтионовой кислоты. Описана полупроизводственная абсорбционная установка [182], работающая с применением медного катализатора. Позднее [183] предложены некоторые другие соединения, ускоряющие процесс абсорбции. Катализаторы увеличивают только скорость абсорбции, но не влияют на ее полноту [184]. [c.35]

    Схема переработки бедного и богатого газов включает узел очистки от органических соединений серы. Очистка от сероводорода осуществляется в специальных абсорберах, в которых поток газа, вводимый снизу, орошается щелочными растворами. В качестве последних могут быть использованы калиевая соль метилаланина или калиевая соль диметилгликоля. Первая служит для абсорбции сероводорода, а вторая для абсорбции сероводорода и диоксида углерода. Для этих процессов также могут быть использованы этанолами-ны. Поглощение происходит при 20-30°С, а регенерация алкацидного раствора при 105-110°С. При этом выделяются сероводород и диоксид углерода, которые, пройдя систему охлаждения, частично растворяются в воде и направляются на переработку совместно со сточными водами. Нерастворив-шуюся основную часть газа, содержащую Н28 и СО2, направляют на установки получения свободной серы. Один объем щелочного раствора может абсорбировать до 50 объемов сероводорода. Расход щелочного раствора на 1000 м газа в среднем равен 1,2 м , причем в очищенном газе содержание сероводорода составляет 0,001 г/м  [c.157]

    По мере увеличения потребности в углеводородном сырье (этане и сжиженных газах) совершенствовались схемы маслоабсорбционных установок в 50—60-х годах широкое распространение получили схемы низкотемпературной абсорбции (НТА), где для охлаждения технологических потоков наряду с водяными (воздушными) холодильниками стали применять специальные холодильные системы (такие же, как в схемах НТК). Технологическая схема низкотемпературной абсорбции состоит как бы из двух частей блока предварительного отбензннивания исходного газа, представляющего собой узел НТК, и блока низкотемпературной абсорбции,, где происходит доизвлечение углеводородов из газа, прошедшего через блок НТК. Такое комбинирование процессов делает схему низкотемпературной абсорбции (НТА) достаточно гибкой и универсальной — она может быть использована для извлечения этана и более тяжелых углеводородов из газов различного состава. Применение схем НТА позволяет обеспечить высокое извлечение пропана из нефтяных газов при сравнительно умеренном охлаждении технологических потоков на установках НТА для извлечения 90—95% пропана достаточно иметь холодильный цикл с изотермой — 30- —38 °С, на установках НТК для этого требуется изотерма -80- —85 °С. [c.205]


Смотреть страницы где упоминается термин Абсорбция схемы процессов, установок: [c.229]    [c.138]    [c.12]    [c.126]    [c.127]    [c.157]    [c.103]    [c.155]    [c.293]    [c.205]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.67 , c.68 , c.96 , c.97 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.67 , c.68 , c.96 , c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Процессы абсорбцией

Схема абсорбции



© 2025 chem21.info Реклама на сайте