Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полисахариды комплексы белков

    В стенке есть белок, который образует с полисахаридами комплекс. Связь между полисахаридом и белком - ковалентная. [c.25]

    A. Получение комплекса белок — пневмококковый полисахарид [c.67]

    Ответственная роль в биохимическом синтезе белков принадлежит нуклеиновым кислотам, которые определяют его специфичность, В самой структуре нуклеиновых кислот заключены основы точного их воспроизведения и направленного синтеза белковых молекул, а также передачи наследственных признаков организма. В то же время белок-фермент способствует синтезу нуклеиновых кислот, полисахаридов и других высокомолекулярных соединений. Сложный комплекс веществ белков, нуклеиновых кислот, углеводов и регуляторов их химических превращений, а именно ферментов, гормонов, витаминов, составляет основу жизненного цикла организма. [c.18]


    Вследствие крайней сложности белкового набора, синтезируемого клетками млекопитающих, изучение всей проблемы на молекулярном уровне требует много времени и часто приводит к неоднозначным результатам. Практически очень интересной кажется область иммунологических исследований изучается реакция многоклеточных систем на введение чужеродных тел-антигенов. Антигены — это, как правило, макромолекулы-белки или полисахариды попадая в организм, они вызывают образование особых плазматических клеток, синтезирующих антитела. Антитела, покинув клетку, вступают в контакт с антигеном. Антитела имеют в молекуле две точки одна специфична и в отношении химической природы, и в отношении пространственной конфигурации, а другая сходна у различных антител. Антитела соединяются с антигеном, и продукт реакции выводится из организма особыми клетками, поглощающими весь возникший комплекс антиген — антитело. Вероятно, появление антигена стимулирует образование плазматических клеток из каких-то предшественников и затем вызывает синтез специфической м-РНК, на которой и получается белок, рассчитанный на захват данного антигена. [c.214]

    Другой специфический полисахарид, так называемый деградированный полисахарид [9], меньшего молекулярного веса, но полностью активный в серологических тестах, можно легко получить из соматического 0-антигена (полисахарид и связанный с ним белок) гидролизом 1 н. уксусной кислотой при 100°. Полисахарид остается в растворе после гидролиза, тогда как другие компоненты антигенного комплекса осаждаются. [c.325]

    ХОНДРОИТИН. Соединительные ткани состоят из волокон коллагена, погруженных в белково-полисахаридный комплекс — белок, ковалентно связанный с углеводом. Наиболее распространенным является полимер, известный под названием хондроитина. В отличие от гликогена углеводная цепь хондроитина не разветвлена, а мономеры соединены в нем р-гликозид-ными связями. Хондроитин резко отличается от других полисахаридов тем, что представляет собой гетерополимер, построенный из чередуюш,ихся остатков с-глюкуроновой кислоты и К-ацетил-в-галактозамина, несущего сульфатную группу. Так называемый хондроитин А содержит эту группу при атоме С4 аминосахара в настоящее время для него принято название хондроитин-4-сульфат. Аналогичным образом хондроитин С — это хондро-итин-6-сульфат. [c.463]

    Подобно аффинной хроматографии, аффинный электрофорез в геле можно применять для определения констант диссоциации комплексов белок — лиганд. Принцип метода заключается в изучении зависимости подвижности данного белка от концентрации связанного лиганда в геле. Этот лиганд может быть либо ковалентно связан с гелем, либо только включен в гель (последнее обусловлено высокомолекулярными свойствами лиганда). Впервые такое использование электрофореза описано Такео и Накамурой [50], (хотя в этой работе еще не введен термин аффинный электрофорез ) константы диссоциации комплексов фосфорилаза— полисахарид определены с помощью электрофореза в полиакриламидном геле, содержащем различные концентрации ковалентно связанного полисахарида. Бег-Хансен [9] применил электрофорез на сефарозе с ковалентно связанным конканавалином А для определения констант диссоциации комплексов конканавалина А с сывороточными гликоиротеинами. [c.168]


    СЯ результатом того, что капсулярные полисахариды обоих типов химически родственны. Полисахарид пневмококков типа VHI также состоит из D-глюкозы и D-глюкуроновой кислоты, но в молярном отношении 7 2, а не 1 1, как в случае шолисахарида типа П1. Полисахарид пневмококков типа XIV содержит ЛГ-ацетилглюкозамин и D-галактозу в молярном отношении 1 3. В фундаментальной работе Авери показал, что типовая специфичность пневмококков контролируется особой нуклеиновой кислотой, характерной для каждого данного типа. Так, нуклеиновая кислота пневмококков типа III может индуцировать превращение пневмококков типа II в тип III это доказывает, что она контролирует синтез полигахарида, определяющего типовую специфичность. Если однажды изменение типа было индуцировано нуклеиновой кислотой, то и сама она будет далее репродуцироваться в процессе деления клеток. Аналогичные полисахариды со специфической активностью были получены и из других патогенных бактерий. Гаптен гемолитических стрептококков группы А состоит из эквимолекулярных количеств М-ацетил-О-глюкозамина и D-глюкуроновои кислоты. Два активных полисахарида туберкулезных бацилл человека представляют собой сильно разветвленные высокомолекулярные соединения, составленные из четырех углеводных остатков (Хеуорс, 1948). Было показано, что антигены некоторых бактерий представляют собой сложные комплексы, содержащие полисахарид и белок. Осуществлен сиитез углеводо- белковых антигенов, специфичность которых определяется строением углеводной составляющей. [c.566]

    Современным знанием о химии эндотоксинов мы обязаны главным образом исследованиям Моргана [3—6] и Гёбеля [7], показавшим, что эндотоксины представляют собой комплексы, содержащие фосфо-рилированный полисахарид и белок. Дальнейшее изучение продуктов распада эндотоксинов, проведенное упомянутыми авторами и другими исследователями, показало, что эндотоксины имеют следующее строение (фиг. 21)  [c.130]

    Белки могут специфично взаимэдействэвать с другими макромолекулами, например с нуклеиновыми кислотами и полисахаридами. К макромолекулам относят также липиды, поскольку они образуют в водных растворах крупные агрегаты. В нуклеопротеидах, гликопротеидах или липопротеидах белок может составлять менее 50%, и суммарные свойства комплексов часто определяются небелковы.ми фрагментами. Более того, и образование, и стабильность структуры белков могут зависеть от их партнеров по комплексам. Эго наиболее очевидно для тех мембранных белков, которые соединяют различные углеводородные фрагменты липидного бислоя. [c.266]

    Гликоген — гомополисахарид, построенный из D-глюкозы. Методами метилирования , периодатного окисления " , частичного кислотного гидролиза и ферментативного pa щeплeния " доказано, что он является ближайшим аналогом амилопектина (см. стр. 534), т. е. обладает ветвистой структурой, построенной из а-1—4-связанных остатков D-глюкопиранозы со связями а-1 6 в точках разветвления. Отличие от амилопектина сводится к большей разветвленности и более тесной упаковке полимерной молекулы . Так, типичные гликогены имеют среднюк> длину цепи 10—14 моносахаридных остатков, из которых на внешние цепи приходится 6—10, а на внутренние —2—4 (см. рис. 11). В соответствии с этим р-амилаза гидролизует гликоген только на 40—50%, а R-фермент, расщепляющий связи а-1- 6 в амилопектине и р-декстринах, на гликоген не действует, по-видимому, из-за пространственных затруднений, создаваемых высокой степенью разветвленности . С другой стороны, конка-навалин-А—белок, не взаимодействующий с амилопектином, образует с гликогеном нерастворимый комплекс, причем существует линейная зависимость между способностью к комплексообразованию и степенью разветвления полисахарида . [c.540]

    Этот полисахарид распространен весьма широко. Он присутствует в соединительных тканях животных, а также в стекловидном теле глаза и в синовиальной жидкости. Кроме того, он синтезируется также различными штаммами бактерий. Обычно гиалуроновая кислота бывает связана с белками комплексы гиалуроновая кислота — белок выделены из природных источников. Предполагают, что фунищия гиалуроновой кислоты заключается в том, чтобы связывать воду в интерстициальных пространствах и удерживать клетки вместе в желеподобном матриксе. Кроме того, она придает синовиальной жидкости смазочные свойства и способность смягчать удары. [c.236]

    Механизм высвобождения полимера из комплекса с липидным переносчиком до сих пор подробно не изучен. Видимо, какую-то роль здесь играет лигазная реакция, в ходе которой полимер освобождается и связывается с клеточной поверхностью. Обычно после экскреции полисахариды остаются связанными с клеточной стенкой местом присоединения может служить какой-либо наружный мембранный белок. Очевидно, существует определенное число мест связывания, после насыщения которых избыток полисахарида выделяется уже в виде слизи. Возможно также, что места связывания приспособлены к полимеру определенного размера. По-видимому, слизистые мутанты образующих капсулы бактерий либо не имеют [c.231]


    Значительные трудности возникают при необходимости удаления высокомолекулярных примесей, например, нуклеиновых кислот и полисахаридов. Вообще говоря, все описанные ниже приемы фракционирования белков используются и для отделения их от этих биополимеров. Кроме того, нуклеиновые кислоты и полисахариды могут быть разрушены с помощью соответствующих гидролитических энзимов. Лилиды при выделении и очистке водорастворимых белков обычно не следуют за ними, особенно при многостадийной очистке. Однако их удаление в тех случаях, когда они образуют с белком прочный комплекс, чрезвычайно затруднительно, ибо экстрагенты липидов — органические растворители — могут денатурировать белок. [c.14]

    Комплексы, выделенные из грамотрицательных бактерий экстракцией фенолом [1] (см. стр. 325), содержат и липид, и полисахарид. Вещество, полученное экстрактщей трихлоруксусной кислотой (см. стр. 333), еще более сложно в его состав входит также и белок. При щелочной экстракции выделены липополисахариды, содержащие небольшие количества липидов. Чтобы получить чистый полисахарид, необходимо подвергнуть гидролизу уксусной кислотой комплекс или высушенные клетки. Обычно для этого достаточно 0,1 н. уксусной кислоты, но иногда необходимо использовать 1 н. уксусную кислоту. Эта методика, впервые использованная Уайтом [2], была применена позднее Фрименом [3], который выделил высокоочищен-ный полисахарид. [c.334]

Рис. 4-46. Три типа матриксов, используемых для хроматографии. При ионообменной хроматографии (А) нерастворимый матрикс содержит ионы, задерживающие молекулы с противоположным зарядом. Для разделения молекул используются следующие матриксы диэтиламиноэтилцеллюлоза (ДЭАЭ-целлюлоза) - заряжена положительно карбоксиметилцеллюлоза (КМ-целлюлоза) и фосфоцеллюлоза - заряжены отрицательно. Силы взаимодействия между молекулами в растворе и ионообменником определяются ионной силой и pH элюирующего раствора, которые для достижения эффективного разделения можно варьировать определенным образом (как на рис. 4-47). При хроматографии по методу гель-фильтрапии (Б) матрикс инертен, но содержит поры. Низкомолекулярные соединения проникают внутрь частиц матрикса. Оказавшись при этом в относительно большем объеме, они проходят через колонку медленнее. В качестве матрикса можно использовать зерна поперечно-сшитого полисахарида (декстран или агароза). Поскольку в продаже имеются полисахариды с самым различным размером пор, их можно использовать для фракционирования молекул с молекулярной массой от 500 до 5 х 10 дальтон. При аффинной хроматографии (В) используется нерастворимый матрикс, ковалентно связанный со специфичными лигандами (антителами или субстратом ферментов), которые присоединяют определенный белок. Связываемые иммобилизованным субстратом молекулы фермента можно элюировать концентрированными растворами субстрата в свободной форме, а молекулы, связанные с иммобилизованными антителами, можно элюировать за счет диссоциации комплекса антитело антиген концентрированными растворами соли или растворами низкого или высокого pH. Однократная хроматография на такой колонке позволяет Рис. 4-46. Три типа матриксов, используемых для хроматографии. При <a href="/info/5708">ионообменной хроматографии</a> (А) нерастворимый матрикс содержит ионы, задерживающие молекулы с <a href="/info/1492295">противоположным зарядом</a>. Для <a href="/info/102982">разделения молекул</a> используются следующие матриксы диэтиламиноэтилцеллюлоза (<a href="/info/99461">ДЭАЭ-целлюлоза</a>) - заряжена положительно карбоксиметилцеллюлоза (КМ-целлюлоза) и фосфоцеллюлоза - заряжены отрицательно. <a href="/info/431504">Силы взаимодействия между молекулами</a> в растворе и ионообменником <a href="/info/432332">определяются ионной</a> силой и pH элюирующего раствора, которые для <a href="/info/1448490">достижения эффективного</a> разделения можно варьировать <a href="/info/711812">определенным образом</a> (как на рис. 4-47). При хроматографии по <a href="/info/176601">методу гель</a>-фильтрапии (Б) матрикс инертен, но содержит поры. <a href="/info/56169">Низкомолекулярные соединения</a> проникают внутрь частиц матрикса. Оказавшись при этом в <a href="/info/1634227">относительно большем</a> объеме, они <a href="/info/336204">проходят через</a> колонку медленнее. В качестве матрикса можно использовать зерна <a href="/info/212509">поперечно-сшитого</a> полисахарида (<a href="/info/558551">декстран</a> или агароза). Поскольку в продаже имеются полисахариды с самым <a href="/info/500679">различным размером</a> пор, их можно использовать для фракционирования молекул с <a href="/info/532">молекулярной массой</a> от 500 до 5 х 10 дальтон. При <a href="/info/76431">аффинной хроматографии</a> (В) используется нерастворимый матрикс, <a href="/info/103926">ковалентно связанный</a> со <a href="/info/1517684">специфичными лигандами</a> (антителами или <a href="/info/100484">субстратом ферментов</a>), <a href="/info/1493527">которые присоединяют</a> <a href="/info/445374">определенный белок</a>. Связываемые иммобилизованным <a href="/info/1527204">субстратом молекулы</a> фермента можно элюировать <a href="/info/15000">концентрированными растворами</a> субстрата в <a href="/info/715229">свободной форме</a>, а молекулы, связанные с иммобилизованными антителами, можно элюировать за счет диссоциации <a href="/info/97309">комплекса антитело антиген</a> <a href="/info/1526993">концентрированными растворами соли</a> или <a href="/info/264972">растворами низкого</a> или высокого pH. <a href="/info/5713">Однократная хроматография</a> на такой колонке позволяет
    Наша модель допускает возможность формирования антипа-раллельных -структур в мембранах, особенно в области контакта белковых субъединиц, однако, в отличие от [46],, она не ставит ограничений на существование в мембранах всего разнообразия типов спиральных и плоских структур, присущих белкам. Кроме того, модель допускает возможность существования в мембране протяженных зон ССИВС, образованных как молекулами фосфолипидов, так и в комплексах фосфолипид-белок, полисахарид-белок и т. д. [c.161]

    Способ иммобилизации влияет на иммунный ответ организма. Ковалентное связывание с полисахаридами, полиэтиленгликолем во многих случаях приводит к снижению иммуногенности препарата, поскольку матрица носителя не допускает контакта с рецептором. С другой стороны, связывание с носителями-полиэлектролитами неоднократно приводило к повыщению иммуно генности препарата. Применение полиакриловой кислоты, поли-винилпиридина и его производных, полимеров на основе О-глутаминовой кислоты и О-лизина в качестве носителей позволило получить препараты, дающие высокий иммунный ответ. На это могут быть разные причины. Возможно, полиэлектролиты образуют прочные комплексы с белком нековалентного типа, которые медленно высвобождают активное начало (белок без какой-либо химической модификации) с более или менее постоянной скоростью или полиэлектролит в комплексе с белком может удерживаться в районе рецептора, высвобождая белок-антиген. Сейчас трудно дать объяснение этому явлению. Но, с другой стороны, полиэлектролитные комплексы могут быть основой создания вакцин нового типа, позволяющих повысить иммунный ответ в организме животных и способствующих выработке антител к любым антигенам (Р. В. Петров, В. А. Кабанов, 1982). [c.127]


Смотреть страницы где упоминается термин Полисахариды комплексы белков: [c.579]    [c.95]    [c.127]    [c.742]    [c.33]    [c.326]    [c.334]    [c.29]    [c.30]    [c.30]    [c.30]    [c.32]    [c.334]    [c.394]    [c.176]    [c.177]    [c.377]    [c.19]    [c.213]    [c.60]    [c.394]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.2 , c.136 , c.150 ]




ПОИСК





Смотрите так же термины и статьи:

Полисахариды



© 2025 chem21.info Реклама на сайте