Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полисахарид специфический

    Гепарин — полисахарид, содержащийся в различных животных тканях, обладает специфическим свойством увеличивать время свертывания крови. Он применяется в медицине для предотвращения образования сгустков крови (тромбоз) после некоторых видов хирургических операций. Полисахарид состоит из эквимолекулярных количеств Д-глюкуроновой кислоты и )-глюкозамина, аминогруппа которого связана с остатком серной кислоты. Одна гидроксильная группа в структурной единице С12 также этерифицирована серной кислотой. Строение гепарина продолжает изучаться. [c.577]


    Проблема установления строения полисахаридов совершенно различна для гомополисахаридов и гетерополисахаридов. Для первых, особенно для гомополисахаридов, не имеющих разветвлений в цеш- , вопрос решается сравнительно просто и не отличается принципиально от установления строения олигосахаридов. Напротив, вопрос о строении гетерополисахаридов весьма сложен и напоминает проблему строения высокомолекулярных пептидов. Между тем именно гетерополисахариды представляют особый биологический интерес, поскольку к ним относятся вещества, играющие чрезвычайно ответственную специфическую роль в жизненных процессах. [c.153]

    Преимуществом колоночной хроматографии является возможность количественного фракционирования больших количеств веществ без превращения их в какие-либо производные. Однако хорошее разделение часто возможно лишь при малых скоростях элюирования, поэтому были разработаны новые виды колоночной хроматографии. Методы аффинной и адсорбционной хроматографии основаны на избирательной адсорбции молекул на нерастворимом адсорбенте, который содержит группы (молекулы), специфически взаимодействующие с молекулами подлежащих очистке соединений, например ингибиторы (для очистки ферментов) или антитела (для очистки антигенов) в настоящее время эти методы нашли широкое применение и для разделения углеводов. Невзаимодействующие с адсорбентом примеси удаляются, а связанный с адсорбентом сахар затем десорбируют способом, не приводящим к его разрушению. Десорбцию можно осуществить, изменяя pH, ионную силу среды или применяя соответствующий ингибитор взаимодействия, удерживающего вещество на адсорбенте. Для разделения ряда полисахаридов были использованы иммобилизованные формы (см. разд. 26.3.7.6) конканавалина А [40], являющегося фитогемагглютинином (лектином), который специфически взаимодействует с разветвленными полисахаридами определенного строения в настоящее время применяют и другие иммобилизованные фитогемагглютинины. Колоночная хроматография на носителях, покрытых полиароматическими соединениями [41], также находит применение для разделения полисахаридов. Благодаря достижениям в производстве носителей для жидкостной хроматографии под высоким давлением можно осуществить хроматографическое разделение быстро и избирательно описаны методы фракционирования небольших олигосахаридов, продолжающегося менее 1 ч [42]. [c.224]

    Рассмотрим лишь один наиболее простой пример ферментативный гидролиз полисахаридов. Распространенг ный фермент животных организмов (лизоцим) специфически расщепляет гликозидные связи -1 — 4-связанных [c.30]


    В идеальном случае ферментативный гидролиз полисахаридов следует проводить ферментами высокой степени чистоты, специфичность которых установлена по их действию на производные гликозидов и на олиго- или полисахариды с точно известной структурой. Эти условия были реализованы нри исследовании ферментативного гидролиза гликогена, амилозы, амилопектина и некоторых родственных им по структуре полисахаридов. Расщепление полисахарида специфическим ферментом может указать на присутствие в нем связи (или связей), для которой этот фермент специфичен. В случае полисахарида, содержащего не один тип связей, а более, можно провести избирательный гидролиз определенной связи, и полученный остаток проанализировать физическими, химическими или иммунологическими методами, либо для получения дополнительной структурной информации подвергнуть дальнейшей деструкции, действуя другими специфическими ферментами. [c.299]

    Путем последовательного присоединения мономера к растущей полимерной цепи идут все процессы синтеза биологических полимеров (белков, нуклеиновых кислот, полисахаридов), катализируемые специфическими ферментами, хотя эти процессы в соответствии с данными выше определениями являются процессами поликонденсации. [c.352]

    Химический состав оболочки неоднороден и резко отличается от оболочек высших растений. Если оболочка у растений состоит из целлюлозы, то в состав оболочки бактерий входят безазотистые и азотистые соединения. Из безазотистых веществ встречаются гемицеллюлозы, специфические полисахариды и липоиды (группа органических жироподобных соединений), из азотистых — хитин (органическое вещество типа полисахаридов, состоящее из ацети-лированного глюкозамина). [c.247]

    Стратегические проблемы синтеза полипептидов и полинуклеотидов носят существенно иной характер. Здесь также требуется последовательное построение необходимых межмономерных связей и, следовательно, применение эффективных и общих методов создания амидной и фосфодиэфирной связей соответственно. Однако в отличие от типичных полисахаридов эти биополимеры состоят из линейных, но нерегулярных последовательностей не идентичных мономерных звеньев. Именно эта специфическая последовательность определяет уника,тьные химические, физические и биохимические свойства каждого из этих биополимеров. Таким образом, стратегической проблемой в синтезе этих соединений является обеспечение строго определенной последовательности мономерных звеньев в растущей полнпептидной или полинуклеотидной цепи, тогда как задача построения самих межмономерных связей низводится на тактический, рутинный уровень. Очевидно, что для построения таких нерегулярных полимерных цепей реакции типа полимеризации или поликонденсации принципиально неприменимы (в противоположность синтезу регулярных полисахаридов), а присоединение к растущей цепи каждого очередного мономерного звена превращается в самостоятельную операцию, требующую собственного набора реагентов и условий ее проведе- [c.298]

    Механизм распознавания рецепторами и антителами своих антигенов почти неизвестен. Известно, однако, что это в высшей степени специфическое взаимодействие, так как его блокируют самые незначительные изменения в структуре углеводного антигена. Структурно измененный полисахарид или углеводсодержащий биополимер — это уже другой антиген на него реагируют рецепторы других лимфоцитов и вырабатываются другие антитела. [c.158]

    Степень метилирования может быть определена по меченому ( С) метилиодиду, добавленному в качестве алкилирующего реагента. Специфическая активность меченого йодистого метила используется для подсчета процентного содержания метоксильных групп как в метилированном полисахариде, так и в метилированных моносахаридах, полученных после гидролиза [119]. Метилирование с метилсульфонил-анионом полисахаридов, трудно растворимых в диметилсульфоксиде, затруднено. [c.93]

    Другую группу гетерополисахаридов составляют гетерополисахариды с нерегулярным или регулярны.м разветвленным строением, которые настолько сложны по набору и последовательности входящих в них моносахаридов, что установление специфического их строения представляет пока еще почти непреодолимые трудности. Полного представления о строении полисахаридов этого типа еще не имеется, хотя именно они являются по-видимому, наиболее интересными с биологической точки зрения. [c.163]

    Бактериальные полисахариды входят в состав бактерий (главным образом капсул) как в свободной форме, так и в качестве простетических групп белков (бактериальных антигенов). Иммунобиологическая специфичность многих бактериальных полисахаридов (специфических полисахаридов) определяется главнцм образом структурой и расположением остатков уроновой кислоты в молекуле этих соединений. [c.86]

    Избирая методику выделения полисахаридсодержащих фракций, мы руководствовались следующими соображениями. В последние годы при выделении специфических полисахаридов пользуются водофеноловым методом, предложенным Вестфалем и сотр. [1]. При этом методе предполагается наличие в бактериальной клетке одного полисахарида —специфического. Из литературных данных известно, что полный антиген, в соста"в которого входит специфический полисахарид, является поверхностным. Интересно было выяснить, существуют ли в клетке полисахариды другого состава, чем специфические. Из литературных данных [2] известно, что из клеток бактерий кишечной группы можно выделить полисахарид типа гликогена. [c.288]


    Ингибиторный анализ применяют также в сочетании с турбидимет-рическими методами. Например, в строго фиксированных условиях при наличии соответствующих контрольных смесей сочетание этих методов может с успехом заменить описанный выше количественный метод, сложность которого заключается в необходимости определения содержания азота в преципитате, образованном конканавалином А и полисахаридом. Мутность смеси является функцией времени, поэтому за последним параметром надо внимательно следить [50]. Как и в предыдущем случае, для проведения аналнза пригоден практически любой полисахарид, специфически осаждающий конканавалин Л. Ниже приведены три примера турбидиметрической методики, различающиеся прежде всего природой используемого полисахарида. [c.97]

    При гидролизе полисахаридов кислотами или специфическими ферментами глюкозидные связи разрушаются и в зависимости от условий образуются различные остатки полимерных звеньев вплоть до моно- или дисахаридов. Полисахариды — основной источник углеводов в питании человека. Они в организме расщепляются различными ферментами крахмал — а-амилазой поджелудочной железы, мальтоза — мальтазой, изомальтазой, сахароза — сахара-зой (инвертазой), лактоза — р-галактозидазой, часть целлюлозы — ферментами микрофлоры толстого кишечника. При гидролизе одной гликозидной связи для сахарозы выделяется 29,3 кДж, а для олиго- или полисахаридов — [c.30]

    Мы уже неоднократно упоминали о том, что олигосахариды могут служить удобными, в некоторых случаях идеальными моделями иолисахаридов, с иомощью которых удается относительно легко выяснить многие вопросы химии и биохимии их более сложных прототипов — самих полисахаридов. Действительно, типичный олигосахарид — это в полном смысле слова маленький полисахарид и все те особенности структуры и свойств полисахаридов, которые не связаны специфическим образом с их высоко-молекулярностью, в полной мере обнаруживаются и для олиго сахаридов. Более того, в большом классе биологических явлений, включающих взаимодействие биополимеров один с другим и даже клеток друг с другом, нередко определяющим фактором ока.зываются контакты поверхностных участков, представляющих собой невосстанавливающие концы полисахаридных цепей. [c.132]

    Для утилизации энергии резервных полисахаридов путем их расщепления до моносахаридов нужно ограниченное число специфических ферментов — полисахаридаз. Это обеспечивает организмам возмон ность аффективною управления поступлением свободной глюкозы, т. е. б конечном счете расходованием запасенной анергии, как путем активации или угнетения этих ферментных систем, так и при помощи включения или блокирования биосинтеза соответствующих ферментов. [c.142]

    Водоросли прибрежных зон океана обитают в весьма своеобразных условиях они подвергаются значительным волновым нагрузкам, направление и величина которых меняется по всем трем координатам в зависимости от ветров и микрорельефа, а водоросли литорали подвержены, кроме того, периодическим обсыханиям во время отливов. Чтобы противостоять таким воздействиям, красные и бурые водоросли выработали чисто полисахаридное приспособление. Все они содержат в качестве межклеточного вещества специфические кислые полисахариды (альгино- [c.163]

    Механизм действия Г. обусловлен его способностью специфически связываться с антитромбином III, что резко повышает ингибирующее действие последнего по отношению к тромбину и др. протеазам, участвующим в свертывании крови. Для такого связывания необходима вполне определенная комбинация моносахаридных звеньев иа достаточно протяженных участках полисахарида. Активному антикоа-гулянтному центру соответствует последовательность остатков 2-6, среди к-рых остатки 2, 3 и 4-минорные компоненты молекулы. [c.523]

    Вероятно, ни один из видов пресноводных гидробионтов, будь то животные или водоросли, не смог бы выжить при таких концентрациях свободных ионов тяжелых металлов, которыми характеризуются морские воды. Обитателям океаносферы позволяют нормально существовать в таких условиях особые механизмы связывания и выведения или депонирования ионов тяжелых металлов. В организмах любых животных, особенно океанических, синтезируются специфические низкомолекулярные водорастворимые белки-металлотионеины, содержащие большое количество тиогрупп — SH, которые прочно связывают "тиоло-вые яды" - ионы ртути, свинца и кадмия. Морские водоросли защищаются от ионов тяжелых металлов, вырабатывая специальные полисахариды (так называемые альгиновые кислоты), которые характеризуются высоким сродством к двухвалентным ионам. [c.253]

    С гексозной областью кора связан О-специфический полисахарид. Как правило, он представляет собой регулярный гомо- или гетерополимер, часто разветвленный, построенный из повторяющихся олигосахаридных (от двух до шести остатков моносахаридов) или моносахаридных звеньев. Длина цепи варьирует от одного повторяющегося звена в 5К-формах бактерий до 30 и более звеньев в 8-формах. Состав полисахаридов чрезвычайно разнообразен. Среди их компонентов насчитываются остатки более 50 разл. моносахаридов (пентоз, гексоз, гексозаминов, дезоксисахаров, уроновых и альдулозоновых к-т, их амипопроизводных, частично метилированных сахаров), а также большое число неуглеводных заместителей (остатков фосфорной к-ты, полиолов, аминов, низших жирных к-т, их гидрокси-, оксо-и аминопроизводны ). Структура полисахаридов широко варьирует не только от вида к виду, но и внутри одного вида микроорганизмов. Иногда эти изменения не очень значительны (напр., присоединение к осн. цепи дополнит, остатка моносахарида, О-ацетилирование, замена К-ацильного заместителя на др., изменение конфигурации одного из асимметрич. центров), в др. случаях полностью меняется состав и структура полисахарида. [c.603]

    Л. могут быть выделены из клеток экстракцией, напр, р-ром фенола в воде. В водных р-рах молекулы Л. проявляют сильную тенденцию к ассоциации. Образуемые ими агрегаты с мол. массой св. 1 млн. м. б. разрушены путем добавления ПАВ (напр., додецилсульфата Na). Препараты Л. неоднородны, что связано с одновременным присутствием молекул, содержащих и не содержащих полисахаридную цепь, а также в связи с разл. длиной этой цепи. Др. причина неоднородности - присутствие неодинаковых кол-в фосфатных и 2-аминоэтилфосфатных групп в коре, О-аце-тильных групп и боковых моносахаридных фрагментов в О-специфическом полисахариде, О-ацильных остатков и необязательных заместителей в липиде А. [c.603]

    В СМС используются такие ферменты, как протеаза, амилаза алка-лаза, липаза и др. Каждый из них оказывает специфическое каталитическое воздействие на разложение загрязнений органической природы протеаза катализирует гидролиз белков амилаза - крахмала и других полисахаридов алкалаза - эфиров углеводов липаза -жиров, глицеридов и т.д. [c.41]

    Молекулы полисахаридов, чаще всего составленные из таких структурных единиц, как 1)-глюкопираноза, )-галактопираноза, 1)-маннопираноза, -ксилопираноза, 1-арабофураноза, обладают весьма близкими химическими свойствами. По этой причине трудно подобрать специфические реагенты для раздельного выделения каждого полисахарида. Обычно применяемые реагенты вместе с основным выделяемым полисахаридом частично осаждают и другие компоненты смеси. [c.36]

    Исключительно велико также значение химии углеводов в развитии биологии и особенно биохимии. Углеводы, вслед за белками и пептидами, являются важнейшими составными частями живого организма. Для животного организма углеводы представляют главный источник энергии, его топливо. Пища млекопитающих состоит прежде всего из углеводов, которые далее подвергаются сложным процессам гликолиза, в результате чего выделяется необходимая для организма энергия. Однако этим далеко не исчерпывается роль углеводов в жизнедеятельности животного. Многие вещества, регулирующие ответственные жизненные процессы, являются производными углеводов. Это, как правило, весьма сложные высокомолекулярные соединения, содержащие наряду с углеводами пептидную и липоидную составляющую, природа которых еще в большинстве случаев не определена. Однако уже сегодня можно уверенно назвать несколько важнейших классов углеводосодержащих веществ, значение которых в процессах жизнедеятельности первостепенно. Это специфические полисахариды, определяющие группы крови, специфические полисахариды, регулирующие иммунитет, гликолипиды (например, цереброзиды и ганглиозиды), входящие в состав нервной ткани, наконец, гликопептиды — сложные комплексы белков и углеводов, имеющие исключительное, хотя еще и далеко не полностью выясненное значение в процессах жизнедеятельности. [c.8]

    Полисахариды по всему своему химическому облику являются ти-пичными высокомолекулярными веществами, и именно это свойство, очевидно, должно быть принято за критерий, отделяющий типичные полисахариды от моио- и олигосахаридов. Полисахариды имеют исключительно большое значение. Они — один из важнейших типов природных биогенных поли.меров, участвующих в различных процессах жизнедеятельности. Их биологическое значение может быть сравнено со значением белков, хотя пока еще гораздо менее изучено. К полисахаридам ]1 их ближайшим производным относятся, например, такие важнейгиие в биологическом отношении типы соединений, как полисахариды плазмы крови, определяющие ее групповую принадлежность, полисахариды, определяющие специфичность иммунологических реакций, гликоген — полисахарид, являющийся главным углеводным резервом животного организма, гликопептиды, специфические полисахаридн микроорганизмов и т. д. и т. п. [c.151]

    Существует целая группа специфических ферментов, расщепляющих полисахариды. Обычно эти ферменты специфичны по отношению к какому-то конкретному сахару, встроенному в цепь с помощью определенного типа гликозидной связи. Примерами такого типа являются ферменты, расщепляющие крахмал. ы-Амилазьг из слюны и поджелудочной железы разрывают молекулы крахмала случайным образом, тогда как [c.171]

    Наружная поверхность внещней мембраны грамотрицательных бактерий покрыта удивительно сложно устроенным липополисахаридом [107, 108]. Внещний слой липополисахарида представляет собой совокупность длинных вытянутых полисахаридных цепочек, состоящих из повторяющихся специфических единиц, обладающих антигенными свойствами и получивщих название 0-антигенов. К этим полисахаридам могут быть получены специфические антитела. Структура полисахаридов характеризуется больщим разнообразием — известно 1000 се-ротипов сальмонелл. Согласно существующей классификации, их разделяют на 17 основных групп. В группу ЕЗ, например, входят сероти-пы, которые состоят из повторяющихся единиц [c.391]

    Исследования умеренных фагов сальмонелл позволили понять некоторые особенности механизмов, с помощью которых эти бактериальные вирусы связываются со стенками клеток-хозяеш. Местом первичного присоединения являются, по-видимому, сами О-антигены. Тонкие нити, расположенные на отростке фага (дополнение 4-Д), действуя наподобие антител, связываются со специфическими группировками полисахарида. Однако в результате включения генома фага и изменения строения О-антигена последующее присоединение -вирусов блокируется. В то же время клетки бактерий становятся восприимчивыми к вирусам другого штамма [109]. [c.394]

    Включение сахарного мономера в полисахарид требует обычно расщепления двух высокоэнергетических фосфатных связей АТР. Однако для процесса активации углеводов характерны некоторые специфические особенности [уравнение (11-24)]. Сначала сахар фосфорилируется киназой [уравнение (11-24), стадия а], после чего от нуклеотидтри- [c.492]

    Обнаружение ряда специфических наследственных болезней, связан- ых с нарушением метаболизма, привлекло внимание биохимиков к изучению путей распада сложных полисахаридов. Существует не менее 7 типов мукополисахаридозов, при которых имеет место избыточное накопление в тканях и повышенное выделение с мочой мукополисахаридов, в частности гиалуроновой кислоты. Эти заболевания характеризуются значительными изменениями скелета, задержкой умственного развития различной степени выраженности и наконец, ранней гибелью, связанной с нарушениями функции печени, почек или сердечно-сосудистой системы. Мукополисахаридозы — это так называемые лизосомные олезни накопления, обусловленные дефицитом лизосомных ферментов [22], а именно отсутствием одной из более чем 40 лизосомных гидролаз. При мукополисахаридозах, как и в случае других лизосомных болезней, нерасщепленные продукты накапливаются в виде внутриклеточ- ых включений, ограниченных однослойной мембраной. Разные тканн повреждаются в неодинаковой степени, но болезнь со временем прогрессирует. [c.541]

    Предложено использовать [43] стимуляторы осаждения для повышения степени регенерации растворимых белков. Наиболее приемлемые результаты дает применение гексаметафосфата натрия по сравнению с карбоксиметилцеллюлозами разных молекулярных масс или различными пектиновыми веществами (галакту-роновая кислота, альгинат натрия, различного рода каррагина-ны). Экстракт, полученный солюбилизацией при pH 11 (соотношение растворителя и муки по массе 20 1) и промывкой нерастворимого осадка, содержит 83 % азота, первоначально бывшего в шроте. Добавление 0,1 г гексаметафосфата на 1 г растворимых белков, а затем подкисление при pH 4,9 дают возможность осаждать 88 % азота экстракта, включая небелковую часть азота. Гексаметафосфат присутствует в осадке (никаких следов фосфата не обнаруживается в поверхностном слое суспензии при концентрации меньше 0,08 г на 1 г белка), что должно снижать содержание белков в осадке. Но белки, специфически осажденные гексаметафосфатом (выход осадка из.меняется от 40 до 88%), имеют низкую молекулярную массу, ярко выраженный основный характер и богаты азотом. Кроме того, осаждение белков с этим стимулятором блокирует наблюдаемое в естественных условиях осаждение растворимых кислых полисахаридов шрота. [c.469]

    Полисахарйды микроорганизмов. Мир микроорганизмов особенно богат самыми разнообразными гетерополисахаридами, которые содержат широкий набор моносахаридов, в том числе амино- и дезоксисахара и более сложные по структуре моносахариды. Эти полисахариды, находясь в наружных слоях тела микроба, определяют его биологическую специфичность. Известно, например, что каждый тип пневмококков — возбудителей воспаления легких — содержит свой собственный специфический полисахарид. Так, один из этих полисахаридов состоит из остатков глюкозы и глюкуроновой кислоты, другой —из остатков галактозы и глюкоз-амина и т. д. [c.483]

    Способ, благодаря которому кремнезем собирается около зародышей полимеризации в специфических центрах организма, остается вопросом предположений и гипотез. Для того чтобы образовались твердые частицы кремнезема в сусиензии в водной среде, необходимо сильное пересыщение раствора мономера, Однако если какое-либо органическое вещество оказывается способным адсорбировать монослой кремневой кислоты, которая затем полимеризуется до образования пленки кремнезема, то кремнезем будет продолжать осаждаться на таком участке нз раствора при условии небольшого пересыщения в этой области. Так, на основании изучения состава стенок клеток нескольких разновидностей диатомей Хекки и др, [390в] предположили, что кремневая кислота способна связываться на богатой гидроксильными группами клеточной поверхности белка, на которой содержатся большие количества серина и тропеонина. Такой белковый слой удерживается на полисахаридах клеточной стенки. Гидроксильные группы аминокислотных сегментов полисахаридов формируют поверхность, на ко- [c.1088]

    Значительная информация об аминокислотных остатках, ответственных за связывание антигена, была получена методом афинной модификации [19]. Этот метод опирается на те же принципы, что и в случае фёрментов (см. разд. 23.3.10). Соединение, близкое по структуре антигену и несущее реакционноспособиую функциональную группу, может в принципе образовывать ковалентную связь с боковым радикалом аминокислоты, принадлежащей центру связывания. До сих пор этот метод не применялся в случае, если антиген представляет собой полисахарид или белок. При этом необходимо знание связывающейся на антителе части антигена, а также специфическое введение в этот участок реакционноспособной группировки. Вследствие этих затруднений современные исследования сконцентрировались на идентификации [c.565]

    Полисахариды входят в состав почти всех живых организмов и являются одним нз наиболее крупных классов природных соединений. Они играют роль источников энергии или структурных элементов в живых организмах. В качестве примера структурной роли полисахаридов можно привести целлюлозу (полимер D-глюкозы), являющуюся самым распространенным органическим веществом в природе и опорным материалом у растений, а также хитин (полимер 2-ацетамндо-2-дезокси-0-глюкозы)—основной компонент наружного скелета членистоногих. В качестве одного из основных источников энергии для живых организмов отдельные полисахариды участвуют в главном направлении энергообмена в большинстве клеток. Крахмалы н гликогены (полимеры D-глюкозы) являются аккумуляторами энергии в растениях и животных, соответственно. Полисахариды выполняют и более специфические функции например, они ответственны за групповую специфичность пневмококков. Другие природные макромолекулы, состоящие не только из углеводных остатков и содержащие в своем составе блоки из моносахаридных звеньев, необходимы для нормального развития и функционирования тканей животных. Групповые вещества крови, например, относятся к гликопротеинам, у которых расположение моносахаридных остатков в углеводных субъединицах ответственно за способность всей молекулы определять групповую принадлежность крови. [c.208]

    Установлено, что полисахариды являются детерминантами, определяющими иммунологическую специфичность многих видов микроорганизмов. Специфическое взаимодействие зависит от ассоциации реакционноспособных групп полисахаридного антигена и белкового антитела, и потому метод, основанный на этом типе взаимодействий, обычно специфичен к строению полисахарида Если получить антисыворотку, специфичную к полисахаридам из вестного строения, ее можно использовать для установления сте пени структурного сходства неизвестных полисахаридов и полиса харидов, к которым специфична данная антисыворотка. Таким пу тем была обнаружена гетерогенность галактана из легких быка Преципитат, образуемый с антисывороткой, специфичной к Pneu mo o us типа XIV, содержал D-галактозу и D-глюкуроновую кис лоту в количествах, отличных от исходного препарата [62]. [c.227]


Смотреть страницы где упоминается термин Полисахарид специфический: [c.127]    [c.219]    [c.23]    [c.579]    [c.447]    [c.311]    [c.157]    [c.163]    [c.602]    [c.525]    [c.535]    [c.225]    [c.254]    [c.22]   
Химия и биохимия углеводов (1978) -- [ c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Полисахариды

Специфические иммунологические реакции полисахаридов

Специфические иммунологические реакции полисахаридов (П. 3. Аллен)

специфическая

специфическая специфическая



© 2025 chem21.info Реклама на сайте