Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные соединения разветвленность

    Наряду с полимерами линейного строения отдельные группы составляют разветвленные и сетчатые высокомолекулярные соединения. Разветвленные полимеры состоят из макромолекул, имеющих боковые ответвления, число и длина которых могут меняться в щироких пределах. Как правило, линейные и разветвленные полимеры растворимы, при нагревании размягчаются, что указывает на отсутствие межмолекулярных химических связей. Сетчатые, или пространственные, полимеры характеризуются наличием опреде- [c.30]


    Макромолекулы могут принимать различные формы, во многом определяющие свойства высокомолекулярных соединений. Так, например, линейные гибкие макромолекулы отличаются высокой эластичностью и пластичностью. Эластичностью считается способность высокомолекулярного соединения растягиваться при приложении внешнего усилия за счет выпрямления цепей макромолекул и затем, при снятии нагрузки, возвращаться в исходное, наиболее вероятное состояние. Под пластичностью понимают свойство высокомолекулярного соединения изменять форму за счет перемещения одних цепей макромолекул относительно других при наличии сдвигающего усилия, превосходящего силы межмолекулярного сцепления. Наличие полярных групп в высокомолекулярных соединениях делает их более жесткими. Жесткостью отличаются макромолекулы спиральной конфигурации. Различными свойствами в зависимости от условий существования обладают разветвленные макромолекулы. Указанные типы макромолекул связаны в высокомолекулярных соединениях межмолекулярны-ми силами сцепления, на которые оказывают влияние как взаимодействие между входящими в молекулу группами атомов, так и взаимодействие аналогичных группировок соседних молекул. [c.29]

    Застудневанию растворов высокомолекулярных соединений, аналогично гелеобразованию, способствуют повышение концентрации высокомолекулярного соединения, понижение температуры, введение в систему соответствующих добавок и т.п. Кроме того, на образование студня положительно влияет разветвленность цепи макромолекул, а также наличие в последних активных групп, склонных к межмолекуляр-ным взаимодействиям. [c.30]

    Полимеры — группа веществ, состоящих- из цепных макромолекул с молекулярной массой порядка 10 —10 . К ним принадлежат природные и синтетические высокомолекулярные соединения целлюлоза, хлопок, шерсть, кожа, каучук, волокна, пластические массы. Молекулы полимеров представляют собой линейную или разветвленную последовательность десятков тысяч мономерных звеньев, соединен ных в цепочки ковалентными связями. [c.318]

    К высокомолекулярным соединениям относятся вещества, молекулы которых состоят из больщого количества элементарных (звеньев одинакового состава и структуры. Такие элементарные звенья образуются простыми органическими веществами (мономерами), способными соединяться между собой ковалентными связями в длинные цепи линейного или разветвленного строения (стр. 73, 442) [c.437]


    ПРИВИТЫЕ СОПОЛИМЕРЫ — высокомолекулярные соединения разветвленного строения, в к-рых основная полимерная цепь отличается от боковых ветвей но составу или строению. [c.162]

    В зависимости от формы макромолекул высокомолекулярные соединения бывают не только линейными, т. е. состоящими из практически неразветвленных цепных макромолекул, но и разветвленными и пространственными (трехмерными). [c.377]

    Высокомолекулярные соединения линейной и разветвленной структуры отличаются от ннзкомолекулярных органических соединений значительно большими силами взаимодействия между молекулами. С увеличением молекулярного веса и полярности полимера силы межмолекулярного взаимодействия возрастают. Размеры отдельных макромолекул полимеров приближаются к )азмерам коллоидных частиц (10 —10 " см). [c.61]

    Розенталь Д.А. и Посадов И.А, постулируют понятие среднего заместителя , предполагая, что ои имеет линейное строение и малую длину. При этом допущении среднее количество алифатических заместителей в молекуле приравнивается найденному числу метиленовых групп, исключая разветвленные алифатические структуры, например изопреноидные цепи, которые в нативных асфальтенах широко распространены. При этой концепции нивелируются различия между реальными алкильными фрагментами молекул, стирается важнейшая информация о химической природе объекта. Для изучения истинной структуры высокомолекулярных соединений нефти [c.43]

    К высокомолекулярным соединениям (ВМС) относят природные и синтетические вещества с относительной молярной массой не менее 10—15 тысяч. Молярная масса природных ВМС может достигать 500—700 тысяч, а в отдельных случаях нескольких миллионов. Подавляющее большинство высокомолекулярных органических соединений имеют линейное или цепочечное строение. Их макромолекулы представляют собой длинные цепи, в которых атомы связаны в форме нитей (или цепей). Длина таких макромолекул превышает их поперечный размер на несколько порядков. Если цепи имеют боковые ответвления, говорят о разветвленных или двумерных цепях. Цепи макромолекул в полимерах могут быть соединены химическими связями (например, мостики серы в вулканизированном каучуке) в пространственные сшитые структуры. [c.435]

    Молекулярные веса большинства полимеров, за небольшим исключением, находятся в пределах 10 —10 . Подавляющее большинство полимеров линейной и разветвленной структур удается растворить без разрушения химических связей между атомами, поэтому изучение свойств разбавленных растворов является наиболее распространенным методом оценки молекулярных характеристик полимеров. Растворению часто предшествует длительный процесс набухания, который зависит от различия в скоростях диффузии малых молекул растворителя и больших молекул полимера. При растворении полимера молекулы растворителя проникают между отдельными макромолекулами, увеличивая межмолекулярные расстояния и уменьшая силы взаимного притяжения между цепями полимера. Этот процесс обрывается при образовании истинного раствора, т. е. системы, в которой практически отсутствует взаимодействие между молекулами растворенного вещества. Однако для высокомолекулярных соединений достигнуть этого можно только при очень низких концентрациях полимера (порядка 0,1—0,2%). [c.149]

    Это распределение, естественно, зависит от химических особенностей мономеров, а также от условий образования полимера. В химии высокомолекулярных соединений известны различные способы получения разветвленных и сетчатых полимеров, которые приводят к различающимся ансамблям полимерных молекул. Одним из наиболее распространенных среди них является метод поликонденсации [9, 10], на примере которого мы в основном будем далее иллюстрировать возможности применения теории графов к описанию полимеров. мер можно вычислить в рамках четко сформулированной модели образования полимера, исходя из основных физических и химических принципов. [c.153]

    Термопласты (ТП)-П. м. на основе линейных или разветвленных полимеров, сополимеров и их смесей (см. также Высокомолекулярные соединения), обратимо переходящих при нагревании в пластическое или вязкотекучее состояние в результате плавления кристаллич. и(или) размягчения аморфной (стеклообразной) фаз. Наиб, распространены ТП на основе гибкоцепных (гл. обр. карбоцепных) полимеров, сополимеров и их смесей - полиолефинов полиэтилена, полипропилена, поли-4-метил-1-пентена), поливинилхлорида, полистирола (см. также Полистирол ударопрочный, АБС-пластик), полиметилметакрилата, поливинилацеталей, производимых в больших объемах и имеющих сравнительно низкую стоимость они обладают низкими т-рами плавления и размягчения, тепло- и термостойкостью. Особое место среди п. м. на основе карбоцепных полимеров занимают фторопласты, для к-рых характерны высокие т-ры плавления и уникальные хим. стойкость и термостойкость, анти- [c.564]


    Общепринятое представление о конденсированном углероде как о пространственно - структурированном высокомолекулярном соединении (ВМС) делает беспредметной саму постановку вопроса об исследовании его молекулярного строения, поскольку из химии ВМС известно, что понятие макромолекула" в этом случае лишено физического смысла. Тем не менее выяснение природы отдельных молекулярных участков (сегментов, фрагментов, звеньев) между узлами разветвления или сшивками необходимо для лучшего понимания организации углеродных структур. [c.18]

    Методами ЭПР-, УФ- и масс-спектрометрии исследован структурно-групповой состав высокомолекулярных соединений, вьщеленных из лечебной нафталанской нефти и вакуумного остатка, выкипающего выше 450°С [27]. Бьша установлена относительно высокая цикличность (3—4 цикла на усредненную молекулу) нафтено-парафиновых углеводородов остатка, представленных как циклопентано-выми, так и циклогексановыми кольцами со слабо разветвленными парафиновыми цепями. Молекулы аренов содержали один-два структурных блока, состоящих из двух ароматических и одного нафтенового кольца. В смолистых компонентах нефти содержалось почти равное количество ароматических и нафтеновых колец (10-11 циклов на усредненную молекулу). [c.22]

    По строению полимерной цепи высокомолекулярные соединения бывают линейными, разветвленными и пространственными. [c.179]

    Распределение по типам функциональности (РТФ), которое может быть представлено в виде интегральной или дифференциальной числовой или массовой функции. РТФ характеризует относительное содержание в полимере макромолекул, имеющих как разное число, так и разную природу функциональных групп. РТФ олигомера определяет его способность к образованию высокомолекулярных соединений и строение получаемого полимера - соотношение линейных, циклических, разветвленных и сшитых структур, от которых, в свою очередь, зависят свойства полимера. [c.337]

    Скорость всего процесса окислительной деструкции определяется скоростью диффузии кислорода в глубь полимера и скоростью самого процесса окисления. Химическая природа и структура полимера оказывают существенное влияние на процесс окисления так, ненасыщенные высокомолекулярные соединения окисляются быстрее, чем насыщенные, поскольку в них легче образуются пероксиды, ускоряя стадию инициирования. Полимеры трехмерной и ароматические жесткоцепной структуры менее подвержены окислительной деструкции, чем линейные и разветвленные. [c.111]

    Свойства высокомолекулярных соединений, в том числе синтетических каучуков, определяются не только химической природой, но и структурными параметрами молекулярных цепей их размерами, пространственным расположением мономерных звеньев, наличием разветвленных структур и т. д. и зависят от условий синтеза. [c.140]

    Еще в начале XX в. высокомолекулярные вещества (смолы, каучуки и т. д.) рассматривали как вещества, состоящие из обычных небольших молекул, образующих в растворах большие агрегаты, наподобие коагулятов. Эта точка зрения была полностью отвергнута в 20-х гг. немецким химиком Г. Штаудингером Еще в 1922 г. он высказал мысль, что высокомолекулярные соединения состоят из больших, многоатомных молекул, названных им макромолекулами. В. 1926 г. на основе изучения свойств таких макромолекул высокополимеров (полистирол и др.) Г. Штаудингер пришел к выводу, что их скелет составлен из углеродных цепей, состоящих из множества углеродных атомов. В дальнейшем он ввел представление и о разветвленном цепном строении высокомолекулярных веществ. [c.257]

    Растворение изолированных препаратов лигнина не всегда происходит таким образом В частности, растворение ЛМР ели и тополя в водном диоксане (9 1) происходит без заметного набухания и начинается с капиллярного впитывания растворителя По мере проникновения молекул растворителя в частицы препарата они начинают слипаться, превращаясь в клейкую массу, которая, не набухая, переходит в раствор Подобная картина типична для высокомолекулярных соединений, обладающих либо небольшим молекулярным весом, либо разветвленными макромолекулами, образующими в растворе сферические частицы [50] Поскольку молекулярный вес препаратов ЛМР был достаточно велик (до 25 ООО), растворение их без предварительного набухания можно рассматривать как еще одно свидетельство в пользу того, что макромолекула природного лигнина разветвлена [c.265]

    Исследование других природных высокомолекулярных соединений аналогичными методами показало, что чаще всего макромолекула этих веществ имеет форму неразветвленной цепи. Однако отсюда не следует, что цепи не могут обладать маленькими разветвлениями (боковая группа СНз у каучука) или небольшими кольцами (пирановые кольца целлюлозы). Макромолекулы многих синтетических высокомолекулярных соединений, особенно полученных методом радикальной полимеризации, имеют разветвленную структуру .  [c.15]

    Свойства высокомолекулярных соединений зависят от молекулярного веса, химического состава и строения, формы макромолекул, ориентации и релаксации (релаксация — снятие напряжений в материале при нагревании), а также упорядоченности структуры макромолекулы. С увеличением молекулярного веса до известного предела улучшаются физико-механические свойства полимеров. Химический состав и строение оказывают большое влияние на тепло-, морозостойкость и химическую стойкость полимеров. Полимеры, имеющие менее разветвленное (асимметричное) строение макромолекулы, отличаются большей вязкостью, меньшей растворимостью и большей прочностью. От правильной ориентации макромолекул во многом зависит качество искусственного и синтетического волокон. [c.294]

    Особый интерес для установления взаимного расположения заместителей в макромолекуле представляет метод ЯМР высокого разрешения, так как положение пиков в спектрах ЯМР в большой степени зависит от ближайшего окружения атомов в цепи. Этим методом, в частности, доказано, что в некоторых случаях заметная-часть мономерных звеньев соединена между собой в положении 1,2 в продуктах полимеризации СН. =СРа и СН2=СНР она составляет соответственно около 10 и 30%. Метод ЯМР С, который применяется для исследования соединений по естественному содержанию тяжелого изотопа углерода С, оказывает существенную помощь при установлении строения разветвленных высокомолекулярных соединений [5]. [c.20]

    Разветвленные или трехмерные полимеры могут образоваться непосредственно во время синтеза высокомолекулярного соединения или в результате побочных реакций при полимераналогичных превра- [c.612]

    Последующие исследования структуры и химических превращений золь- и гель-фракций каучука, развитие химии высокомолекулярных соединений и исследование свойств синтетических каучуков (СК) привели к заключению [1, с. 126, 215, 290], что различие между фракциями состоит не в степени агрегации коллоидных частиц, а в величине молекулярной массы и разветвлен-ности молекул, составляющих гель-фракцию. Одновременно было показано, что физические свойства вулканизатов (отсутствие растворимости и пластического течения, повышение эластичности и прочности и т. д.) хорошо объясняются и могут быть предсказаны на основании положения о соединении отдельных линейных молекул каучука химическими связями в единую пространственную сетку. В то же время попытки создать модельные связнодисперсные коллоидные системы с граничными сольватными слоями в случае каучукоподобных полимеров, которые обладали бы высокой прочностью, оказались безуспешными [4, с. 340]. [c.12]

    Макромолекулы могут иметь линейную, разветвленную или пространственную структуру. Высокомолекулярные соединения, которые при нагревании приобретают пластичность, а при охлаждении вновь возвращаются в твердое состояние, называются термопластичными. [c.240]

    Таким образом, мочевина образует комплексы с органическими соеди нениями, содержащими длинные неразветвленные цепи (парафины), а тио-мочевнна дает комплексы со сравнительно мало разветвленными или простейшими циклическими соединениями. Однако в высокомолекулярных соединениях мочевина может дать комплексы с углеводородами, имеющими разветвления или даже кольца, а тиомочевина образовать комплексы с н-парафинами. [c.203]

    НИЯ, весьма сложен. В связи с этим существует разрьш между нашими представлениями о свойствах тяжелых углеводородных модельных веществ и тем, что мы знаем о свойствах тяжелых углеводородов нефти в общем наши знания об углеводородах молекулярного веса от 300—1000 довольно ограничены. Каждый, кто применяет для анализа высокомолекулярных продуктов методы, основанные на свойствах синтетических углеводородов, должен быть знаком с этим фактом. Для восполнения пробела необходима большая работа, так как недостаток данных по индивидуальным компонентам становится серьезной помехой при изучении высококипящих нефтяных фракций. Если метод структурно-группового анализа применяется для изучения структурных элементов, которые не могут быть точро определены в нефтяных фракциях, например степень разветвления, то единственно возможным путем является изучение синтетических углеводородов. В этих случаях требуется большое число данных не только о самих чистых веществах, но также и об их смесях. Несмотря на то, что число данных все время увеличивается, как правило, не имеется достаточного экспериментального материала по высокомолекулярным соединениям. [c.369]

    С. Р. Сергиенко [215] пришел к выводу, что структуры высокомолекулярных соединений нефтей по своей форме не являются ни линейными, ни разветвленными и ввел новое понятие о гроздьевидной структуре, в которой возможны различные сочетания алифатических, нафтеновых и ароматических структур как углеводородных, так и неуглеводородных (гетероорганичес-ких). [c.15]

    Из высокомолекулярных соединений нефти только парафиновы-е углеводороды по форме молекулы соответствуют первому (парафины нормального строения) или второму (разветвленные парафины) типу. Остальные высокомолекулярные соединения нефти, как углеводороды, так и гетероорганические соединения, нельзя отнести ио форме ни к одному из трех приведенных выше геометрических типов молекул. Наиболее правильное представление о форме молекул этих соединений может дать сравнение их с гроздью винограда [5]. Поэтому для характеристики формы молекулы высокомолекулярных соединений нефти, за исключением парафинов, следует ввести четвертый тип — гроздьевидный. Эта форма окажется, по-видимому, более приемлемой, чем три вышеупомянутые, также и для характеристики молекул таких высокомолекулярных природных соединений, как лигнин, природные смолы и др. Со временем появятся, вероятно, и синтетические высокомолекулярные соединения, приближающиеся по структуре молекул к гроздьевидиой форме. [c.14]

    ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ — химические соединения, молекулярная масса которых может быть равна от нескольких тысяч до нескольких миллионов. Атомы В. с. соединены друг с другом валентными связями. Атомы нли атомные группировки в молекулах В. с. располагаются в виде длинной цепи (линейные В. с., напр,, целлюлоза), либо в виде разветвленной цени (разветвленные В, с,, напр., амнлопектин), либо в виде трехмерной сетки, состоящей из отрезков цепного строения (сшитые В. с., напр., феполформальдегидные смолы). В. с., состоящие из большого числа повторяющихся групп одинакового строения, называют полимерами. В. с., молекулы которых содержат несколько типов повторяющихся групп, называют сополимерами. В зависимости от химического состава, В. с. делятся на гете-роцепиые (в основной цепи содержатся атомы различных элементов) и гомоцеп-ные (в цепи — одинаковые атомы). В. с. применяются во всех отраслях народного хозяйства. На основе В. с. изготовляют резины, волокна, пластмассы, пленки, покрытия, различные изделия, посуду, мебель, клен, лаки и др. Все ткани живых организмов состоят из В. с. [c.61]

    При изучении строения макромолекулы полимера наряду с определением химического строения элементарных звеньев, порядка и.х чередования и пространственного расположения большое значение приобретает определение геометричской формы макромолекулы. По форме макромолекул высокомолекулярные соединения разделяются на линейные, разветвленные и сетчатые. Сетчатые полимеры, в свою очередь, делятся на лестничные, паркетные, или пластинчатые, и трехмерные. [c.27]

    Макромолекулы разветвленного полимера (рис. 1,6) представляют собой цепи с боковыми ответвлениями. Число боковых ответвлений, а также отношение длины основной цепи к длине боковых цепей могут быть различными. К разветвленным полимерам относятся амилопек-тин (одна из составных частей крахмала), гликоген и, по-видимому,некоторые смешанные природные высокомолекулярные соединения. В последние годы синтез разветвленных полимеров получил широкое развитие. В процессе синтеза к линейной макромолекуле одного состава можно присоединить ( привить ) боковые цепи другого состава  [c.28]

    В зависимости от особенностей постановки учебного процесса в различных вузах страны некоторые смежные разделы (адсорбция газов и паров, хроматография, электрокапиллярные явления, физическая химия высокомолекулярных соединений и др.) могут включаться в другие учебные курсы. По таким разделам в учебнике излагается лишь тот материал, который является коллоидно-химическим по существу и необходим по логике построения курса. Более подробное изложение этих вопросов, а также современных коллоидно-химических методов исследования читатели могут найти в руководствах по практикуму, пособиях и монографиях, приведенных в конце книги. В связи с разветвленным, интердисциплинарным характером коллоидно-химической науки в книге многократно используются ссылки на предыдущие и последующие главы, что помогает восприятию взаимосвязи разделов учебника. [c.3]

    Мы попытались в настоящем обзоре познакомить читателей со всем богатством теоретических подходов и разнообразием расчетных методов, которые используются в последнее время при описании статистики разветвленных и сетчатых полимеров. Все эти методы в большей или меньшей степени связаны с представлением полимерных молекул в виде графов, которые позволяют формализовать многие задачи химии и физики высокомолекулярных соединений. Общей их особенностью является то, что все экспериментально наблюдаемые характеристики полимеров представляют собой некоторые средние по конфигурационно-конформационному набору молекул полпмерного образца. Поэтому с необходимостью возникают задачи усреднения в ансамбле случайных графов, помещенных в трехмерное пространство. Вероятностная мера на множестве этих графов в случае равновесных систем задается распределением Гиббса и однозначно определяется выбранной физико-химической моделью. Современные ее варианты, учитывающие внутримолекулярную циклизацию и объемные физические взаимодействия, требуют привлечения для расчетов статистических характеристик полимеров новых подходов. Наиболее эффективными здесь являются, по нашему мнению, методы теории ноля, широкие возможности которых показаны в разд. IV. Здесь снова химическая физика полимеров вынуждена взять на вооружение графы, поскольку рабочим языком теорпи поля служит диаграммная техника. Можно с уве- [c.291]

    МАКРОМОЛЕКУЛА (от греч. makros-большой и молекула), молекула полимера. М. имеют цепное строение состоят из одинаковых или разл. структурных единиц-с о ставных звеньев, представляющих собой атомы или групцы атомов, соединенные друг с другом ковалентными связями в линейные последовательности. Последовательность соединенных друг с другом атомов, образующих собственно цепь, наз. хребтом цепи, или цепью главных валентностей, а заместители у этих атомов - боковыми группами. М. могут иметь линейное или разветвленное строение, в разветвленных М. различают основную и боковые цепи. См. также Высокомолекулярные соединения. [c.636]

    Высокомолекулярные соединения — химические соединения, молекулярная масса которых— от нескольких тысяч до нескольких миллионов. Атомы в них соединены между собой химическими связями. Атомы или атомные группировки в молекуле В. с. располагаются либо в виде длинной цепи (линейные В. с., напр, целлюлоза), либо в виде разветвленной цепи (разветвленные В. с., напр, амило-пектин). В, с., состоящие из большого числа повторяющихся группировок (звеньев) одинакового строения, называют полимерами, напр, поливинилхлорид (—СНг—СНС1—) , каучук натуральный [c.34]

    Аналитическая химия эластомеров требует значительных усилий, так как речь идёт о разветвленных, сильносшитых высокомолекулярных соединениях. В зависимости от вида и количества содержащихся веществ, таких как мягчители, противостарители или вулканизующие агенты, вводимых с целью достижения специфических технологических свойств и создания устойчивости к нагреванию и внешней среде, можно проводить анализы экстрактов, полученных с подходящими растворителями. При этом необходимо принимать во внимание, что особенно вулканизующие агенты, как, впрочем, и противостарители, первоначально введённые в смесь, во время реакций сшивания или при использовании эластомеров количественно изменяются или химически связываются. При этом, исходя из побочных продуктов, можно сделать заключение о механизме реакций и качественном составе смеси. Наряду с тонкослойной хроматографией, для грубого качественного анализа в литературе в качестве метода исследования рассматривается газовая хроматография (ГХ). Использование высокоэффективной жидкостной хроматографии (ВЭЖХ) для аналитических исследований эластомеров описано в литературе лишь при разрешении специальных проблемных задач [8]. [c.584]

    До сих пор нами были рассмотрены только линейные полимеры, состоящие из практически неразветвленных цепцых макромолекул. Встречаются также разветвленные и пространственные, или трехмерные, полимеры (рис. 6). Макромолекулы разветвленных полимеров имеют вид длинных цепей с боковыми ответвлениями, число, длина и взаимное расположение которых могут меняться в широких пределах, оказывая существенное влияние на свойства полимеров. К полимерам этого типа относятся амилопектин крахмала, некоторые синтетические высокомолекулярные соединения и так называемые привитые сополимеры. Особой разновидностью разветвленных высокомолекулярных соединений являются гребнеобразные полимеры, где у каждого мономерного звена имеются длинные алифатические ответвления в этом случае макромолекулу можно рассматривать как некоторое число длинноцепных молекул сравнительно небольшой величины, химически связанных друг с другом при помощи основной цепи. [c.24]

    По химическим признакам полимеры разделяются на линейные, разветвленные и пространственно-структурированные или сшитые, а также на низко- и высокомолекулярные. Строение цепей высокомолекулярного соединения одного и того же химического состава может отличаться вследствие стереоизомерии. Важнейшими стереорегулярными полимерами являются изотактические и синдиотактические. Атактический (стереонерегулярный и изотактический полимеры одного и того же химического состава резко отличаются по строению и свойствам. Атактические полимеры, состоящие из нерегулярно построенных цепей, аморфны и неспособны кристаллизоваться даже при растяжении. Изотактм-ческие полимеры обычно находятся в кристаллическом состоянии или легко кристаллизуются при растяжении (натуральный каучук). [c.65]


Смотреть страницы где упоминается термин Высокомолекулярные соединения разветвленность: [c.93]    [c.14]    [c.33]    [c.643]    [c.579]    [c.27]   
Химия и технология полимеров Том 1 (1965) -- [ c.127 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения

Разветвление

Разветвленность



© 2024 chem21.info Реклама на сайте