Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент вязкости трения

    Когда две движущиеся друг по другу поверхности разделены слоем масла, возникает жидкостное трение, т. е. трение между слоями и молекулами масла. Коэффициент жидкостного трения лежит в пределах 0,001—0,010. К пленке масла, разделяющей движущиеся детали, могут быть применимы законы гидродинамики, причем вязкость масла является в этом случае первостепенным фактором. [c.129]


    Во-вторых, если имеется какое-либо свойство, измеряемое экспериментально, которое зависит от эффективного диаметра столкновения, можно воспользоваться экспериментальными значениями Оэфф. Одним из таких свойств (не единственным) является вязкость, или внутреннее трение газа (см. гл. П1, 3). Молекулярно-кинетическая теория идеального газа дает следующее соотношение между коэффициентом вязкости т), выраженным в г см сек, и квадратом эффективного диаметра столкновения, выраженного в см [c.122]

    Величина Х ,/ характеризует движущую силу переноса импульса и определяется комбинацией перепадов скорости вереде. Силы трения Р,-,/ находятся как линейные функции перепадов скорости по известным коэффициентам вязкости [5]. [c.241]

    Коэффициент сопротивления трения зависит от ряда факторов рода жидкости, ее режима движения, плотности и вязкости, состояния поверхности, наличия теплообмена и др. Для его расчета в случае изотермического потока, т. е. при отсутствии теплообмена, при ламинарном режиме движения среды в гладких трубах действителен закон Пуазейля [c.249]

    При выводе этих уравнений коэффициент вязкости а принимался неизменным. Это может оказаться недостаточно строгим для случая контактного уплотнения, в котором диски работают на полусухом трении, где вследствие нагрева коэффициент вязкости может значительно изменяться по длине зазора. При гидравлическом уплотнении, где предполагается некоторый расход уплотняющей жидкости и отвод выделяемого тепла, коэффициент вязкости может быть принят одинаковым в пределах зазора. В этих устройствах зазор значительно превышает тот предельный зазор, при котором влияние твердых стенок сказывается на физические свойства жидкости. В этих условиях выведенные здесь приближенные формулы могут обеспечить достаточную для практики точность. [c.269]

    Величина коэффициента жидкостного трения зависит прежде всего от вязкости (внутреннего трения), смазочного материала, а также от нагрузки, скорости и геометрических параметров узла трения. Коэффициент жидкостного трения составляет величину порядка 0,01 —0,001, т. е. он намного (иногда в сотни раз) меньше коэффициента сухого трения. Этим обеспечивается надежность и экономичность машин и двигателей и этим определяются необходимость и целесообразность применения смазочных масел. [c.143]

    Удовлетворить этим основным требованиям может масло, обладающее необходимым уровнем вязкости при положительных температурах, малым температурным коэффициентом вязкости во всем интервале рабочих температур, высокой химической стабильностью, низкой испаряемостью, способное обеспечить работу с минимальным трением и возможно малым износом. [c.394]


    Вязкость растворов полимеров. Хотя растворы полимеров представляют собой молекулярно-дисперсные системы и этим вполне соответствуют условиям истинного растворения, для них характерна исключительно высокая вязкость. Столь высокая вязкость растворов затрудняет их детальное изучение, определение теплот растворения и набухания и величины молекулярного веса полимера. Даже при большом разбавлении (0,25—0,5%) вязкость раствора полимера в 15— 5 раз превосходит вязкость растворителя. Высокая вязкость полимерных растворов обусловлена большими размерами макромолекул и их нитевидным строением. Размеры макромолекул в сотни и тысячи раз превосходят размеры молекул растворителя и обладают значительно меньшей подвижностью. Поэтому макромолекулы оказывают сильное сопротивление движению жидкости (растворителя). Сопротивление движению жидкости возрастает с увеличением длины макромолекулы и степени ее вытянутости. Клубкообразные макромолекулы быстрее перемещаются в растворителе и не столь сильно затрудняют движение молекул растворителя. Благодаря этому уменьшается коэффициент внутреннего трения, что приводит к снижению вязкости раствора. Вязкость увеличивается и с возрастанием сил межмолекулярного взаимодействия, поскольку затрудняется скольжение цепей относительно друг друга. [c.68]

    Кинематической вязкостью (или удельным коэффициентом внутреннего трения) называется сила сопротивления двух слоев жидкости площадью 1 см , находящихся на расстоянии 1 см друг от друга и перемещающихся относительно друг друга со скоростью 1 см сек, отнесенная к единице плотности. Единицей кинематической вязкости является стокс (сокращенно ст). [c.101]

    Для сжимаемого газа при линейной зависимости коэффициента вязкости от температуры (о] = 1) приближенные значения напряжения трения и толщины потери импульса не будут зависеть от числа Мо в полном соответствии с результатами численных расчетов, основанных на использовании дифференци-20  [c.307]

    Вязкость характеризуется коэффициентом внутреннего трения коэффициентом вязкости), представляющим собой силу сопро- [c.33]

    Коэффициент внутреннего трения газов (вязкость) также связан с 2 и Л этот фактор надо учитывать при изучении протекания газов в трубопроводах. Можно показать, что коэффициент внутреннего трения идеального газа при постоянной температуре не зависит от давления. Физический смысл [c.22]

    Если площадь. 5=1 м2, iii//dл =l, то / = Т1 и носит название коэффициента вязкости или коэффициента внутреннего трения. Этот коэффициент зависит от природы жидкости и ее температуры. Из уравнения (1,32) определяем [c.42]

    При повышении температуры увеличивается интенсивность движения сегментов, что препятствует образованию структур, и вследствие этого отклонение от законов Ньютона и Пуазейля при повышенных температурах наблюдается в меньшей степени. Кроме того, при повышении температуры понижается истинный коэффициент внутреннего трения, что также обуславливает понижение вязкости раствора. Здесь, однако, уместно отметить, что повышение температуры не всегда ведет к понижению вязкости раствора высокомолекулярного вещества. Такое понижение характерно для растворов, содержащих сильно разветвленные макромолекулы, у которых сегментарный тип движения мало выражен. Вязкость растворов, содержащих длинные неразветвленные молекулярные цепи, с повышением температуры может даже повышаться из-за увеличения интенсивности движения сегментов, препятствующего ориентации макромолекулы в потоке. [c.463]

    Жидкости характеризуются рядо.м физических величин плотностью р, температурой замерзания заы, температурой кипения кип, критической температурой Гщ,, коэффициентом преломления D, коэффициентом поверхностного натяжения а, коэффициентом внутреннего трения (вязкостью) i] и др. [c.23]

    Вязкостью (внутренним трением) называется сопротивление, возникающее внутри жидкости при перемещении одних слоев ее относительно других. Вязкость характеризуется коэффициентом внутреннего трения т]. При определении г) при помощи вискозиметра измеряют время истечения (с) Тж и Гн.о одинаковых объемов исследуемой жидкости и воды через капилляр вискозиметра определенного радиуса и длины [c.24]

    Для обычных жидкостей в условиях ламинарного (послойного) потока вязкость (коэффициент внутреннего трения) не зависит от скорости течения жидкости. [c.312]

    Согласно полученному выражению, коэффициент вязкости (или просто вязкость) равен силе сопротивления (трения) между слоями жидкости при площади соприкасающихся слоев жидкости, равной единице, и градиенте скорости течения между слоями, равном единице. [c.380]


    Вязкость жидкости проявляется и при перемещении твердых тел относительно жидкости. При движении твердого тела в жидкости на него действует сила вязкого трения, пропорциональная скорости перемещения твердого тела. Коэффициент пропорциональности называют коэффициентом поступательного трения /. Таким образом, [c.115]

    Таким образом, чем выше вязкость, тем менее подвижна жидкость. Вязкость жидкости проявляется и в сопротивлении перемещению твердых тел относительно жидкости. При движении твердого тела в жидкости на него действует сила вязкого трения, пропорциональная скорости перемещения твердого тела. Коэффициент пропорциональности называют коэффициентом поступательного трения /. Таким образом, [c.127]

    Оседание частиц твердых тел в жидкостях зависит от вязкости последних. Для шарообразных частиц сила сопротивления, или сила трения, Р пропорциональна коэффициенту вязкости т], скорости движения (падения) [c.126]

    Коэффициент пропорциональности т , называемый коэффициентом внутреннего трения или коэффициентом вязкости, зависит от природы жидкости и температуры. [c.249]

    Величина вязкости (внутреннего трения) характеризуется коэффициентом вязкости или внутреннего трения Г). Физический смысл этого коэффициента можно вывести из формулы Ньютона (48) [c.54]

    Р у]. Следовательно, коэффициент вязкости равен силе трения в ньютонах, которая возникает между слоями жидкости площадью 1 м при градиенте скорости между [c.54]

    Согласно закону Стокса, справедливому в тех случаях, когда размеры тела велики по сравнению с молекулами среды, тормозящая сила трения f при движении шарика с радиусом R выражается уравнением / = 6я/ т1и, где т — коэффициент вязкости. Отсюда B = Qnr]R. Сила Ее постоянна и не зависит от времени и положения иона. Сила же трения, равная нулю в начале движения, возрастает при изменении скорости и через некоторое время становится равной Ес. После этого момента ион двигается равномерно. [c.193]

    Коэффициент внутреннего трения т) называется коэффициентом вязкости, или динамической вязкостью. Если принять 5=-= 1 м , м/с на 1 м и [c.23]

    Основной физико-механической характеристикой смазочных масел является их вязкость, или коэффициент внутреннего трения. От величины вязкости зависит способность данного сорта масла нри температуре, характерной для данного узла трения, выполнять свои функции — поддерживать гидродинамический режим смазки, т. е. обеспечивать замену сухого трения жидкостным, и предотвращать износ материала. Ввиду исключительно большого разнообразия в конструкциях узлов трения, в характере и скорости движения трущихся поверхностей, а также в возникающих удельных нагрузках различные группы масел, а внутри групп отдельные сорта должны отличаться друг от друга но величине вязкости в широком диапазоне. Очевидно, например, что высоконагруженные механизмы требуют масел с высокими значениями вязкости, во избежание выдавливания масла из-под трущихся поверхностей и нарушения режима жидкостной смазки. С другой стороны, применение очень вязких масел в тех случаях, когда это не диктуется необходимостью, повышает энергетические затраты на преодоление трения, а применительно к двигателям внутреннего сгорания осложняет их запуск и эксплуатацию. От правильного выбора вязкости масла для определенных конкретных условий во многом зависит надежность и экономичность работы машин и механизмов. Именно поэтому, а также учитывая [c.175]

    Согласно этому уравнению, вязкость, или коэффициент внутреннего трения, являются величинами постоянными. Тогда зависимость напряжения сдвига от градиента скорости деформации представляет собой прямую, выходящую из начала координат с угловым коэффициентом, равным вязкости (линия 1 на рис.2.4). Однако выяснилось, что лишь немногие простые системы подчиняются уравнению (2.6), для большинства природных и искусственных систем были обнаружены отклонения от закона Ньютона, имеющие различный вид [61-62]. [c.46]

    Динамической вязкостью, или коэффициентом внутреннего трения, называется сила сопротивления двух слоев жидкости с поверхностью 1 находящихся на расстоянии см ш перемещающихся друг относительно друга со скоростью 1 см1сек. [c.44]

    В заключение необходимо отметить, что напряжение вязкого трения, обусловлеинсе молекулярным переносом импульса, не всегда описывается законом Ньютона [уравненне (6) . В некоторых случаях коэффициент вязкости т зависит от самого напряжения трения. В движущихся жидкостях наблюдаются также эффекты упругости. Теория молекулярного переноса импульса в так называемых неныотоновских и вязкоупругих жидкостях изложена в [5, 6], а также обсуждается в 2.2.8. [c.72]

    Под действием механических напряжений нефтяная дисперсная структура способна к течению, но с раяличной скоростью. Текучесть (пластичность) дисперсных систем — величина обратно ироиорцнональная коэффициенту внутреннего трения (вязкости), Поэтому переход нефтяной системы из одного состояния в другое (молекулярный раствор, золь, гель) изменяет вязкость и соответс гвепно се способность к течению, выраженную с но-моп[ью различных количественных характеристик. [c.178]

    Вязкость характеризует свойство жидкости оказывать сопротивление сдвигу при перемещении частей жидкости относительно друг друга. Для чистых нефтей и нефтепродуктов справедливо уравнение Ньютона т = г) <1у / ё/, где т - напряжение сдвига, т] - динамическая вязкость (коэффициент внутреннего трения), dv/d/ - градиент скорости между слоями жидкости на единицу длины. Единицей динамической вязкости является паскаль-секунда (Па с). Отношение динамической вязкости к плотности называется кинематической вязкостью и измеряется в единицах - м /с. Применяется и внесистемная единица мм /с, идентичная одному сантистоксу (сСм) - единица, которая используется до сих пор. Для измерения вязкости жидкостей в потоке, в основном, используются вибрационные вискозиметры и вискозиметры с падающим шариком [9]. Из отечественных вискозимет- [c.56]

    Если смещение цепи происходит не в состоянии статического равновесия и не путем одного всплеска тепловой флуктуации, то перемещение цепи не будет обратимым вдоль линии наименьших значений энергии и потребует больших затрат энергии, чем в предыдущих случаях. Чувствительная к скорости энергия, затраченная на единицу расстояния вынужденного перемещения сегмента цепи, эквивалентна силе сдвигового трения ц. Широко исследовалась и обсуждалась в литературе [25] реакция цепей на усилия сдвига в растворе. Было выдвинуто большое число различных молекулярных теорий вязкоупругого поведения полимерных цепей в растворе. С помощью подобных теорий рассчитывается связь между молекулярной массой М (или степенью полимеризации Р), вязкостью раствора "Пз, внутренней вязкостью [ п]=Ит(т1 — т15)/ст15, коэффициентом молекулярного трения и средним квадратом расстояния [c.143]

    Коэффициенты вязкости и подвижности на криволиней1юм участке а-б линий течения нефти через капилляр (рис.3.2) или образец породы (рис.3.3) являются величинами переменными. Их можно вычис.чить, формально применяя линейные законы (вязкого трения Ньютона и фильтрации Дарси) для любой фиксированной точ1си участка а-б , соответствующей равновесному состоянию процессов разрушения и восстановления структуры в нефти при установившемся режиме течения. Так как коэффициенты вязкости и подвижности структурированной нефти - переменные величины, их принято называть кажущимися иш эффективными [26, 39]. [c.32]

    Следует различать динамическую и кинематическую вязкость. Динамическая вязкость полезна при рассмотрении абсолютных сил между слоями жидкости, а кинематическая вязкость — при исследовании движения вязких жидкостей. По [9] динамической вязкостью (или коэффициентом внутреннего трения) называется сила сопротивления двух слоев площадью 1 см , находящихся на расстоянии 1 см друг от друга и перемещающихся относительно друг друга со скоростью 1 см/сек. Единицей динамической вязкости является пуаз (сокращенно и), представляющий собой вязкость жидкости, оказывающей взаимному перемещению двух слоев жидкости площадью 1 см , находящихся на расстоянии 1 см друг от друга и перемещающихся отрюсительно друг друга со скоростью 1 см/сек, сопротивление силой в 1 дн. Сотая часть пуаза называется сантинуазом (сокращенно сп). Динамическая вязкость при температуре г обозначается знаком г][. [c.101]

    Величина f" (0) зависпт от числа Мо и показателя о в степенной зависимости коэффициента вязкости от температуры. Расчеты профилей скорости и температуры, а также напряжения трения на стенке для сжимаемого газа при со = 0,76 были [c.294]


Смотреть страницы где упоминается термин Коэффициент вязкости трения: [c.229]    [c.118]    [c.28]    [c.552]    [c.553]    [c.411]    [c.249]    [c.38]    [c.334]    [c.58]    [c.501]    [c.65]    [c.48]   
Энциклопедия полимеров Том 2 (1974) -- [ c.233 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.233 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент вязкости

Коэффициент трения



© 2025 chem21.info Реклама на сайте