Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновские лучи возникновение дифракция

    Рентгенография дает прямую информацию о расположении атомов в молекулах и кристаллах. Рентгеновские лучи, т. е. электромагнитные волны с длиной порядка 0,1 нм, рассеиваются иа электронных оболочках атомов. Интерференция волн, рассеянных веществом, приводит к возникновению дифракционной картины. При рассеянии иа кристалле можно рассматривать дифракцию как отражение рентгеновских лучей плоскостями кристаллической решетки (рис. 5.1). Дифракция наблюдается, если рассеянные волны находятся в фазе, т. е. разность хода равна целому числу п волн. Если расстояние между кристаллическими плоскостями равно (1, то условие дифракции (отражения) дается формулой Брэгга — Вульфа [c.130]


    Изучение кристаллических сеток полиэтилена и натурального каучука методом рассеяния рентгеновских лучей под большими углами [11, 12] указывает на то, что увеличение плотности сшивки влечет за собой прогрессирующее расширение рефлексов от различных кристаллических плоскостей. Это может быть связано с уменьшением размеров кристаллитов, дальнейшим нарушением кристаллического порядка или с возникновением внутренних напряжений. Независимо от того, какой из этих эффектов вызывает расширение полос рентгеновской дифракции, каждый из них может понижать температуру плавления. Следовательно, главной причиной такого большого снижения температуры плавления является сильное ограничение возможности установления совершенного кристаллического порядка в системе даже после тщательного отжига. Совершенно очевидно, что это ограничение вызвано наличием сшивок. Постоянные сшивки препятствуют установлению поперечной упорядоченности при упаковке полимерных цепей, необходимой для образования достаточно больших кристаллитов. Участие в кристаллизации звеньев, смежных со сшитыми, также может быть затруднено или невозможно. Поэтому и развитие продольной кристаллической упорядоченности ограничивается в большей степени, чем это следует из простого учета концентрации сшивок. [c.159]

    Анализ формулы (5.2) указывает, что ц чрезвычайно малая величина, это свидетельствует о слабом поглощении рентгеновских лучей веществом, их высокой проникающей способности. Эта особенность, а также дифракция рентгеновских лучей на кристаллических решетках служат основой их практического использования для изучения структуры оптически непрозрачных веществ без их разрушения. Для возникновения явления дифракции необходимо, чтобы расстояние между соседними плоскостями отражения в рассеивающем кристалле было не менее половины длины волны падающего луча. (Длины волн видимого света находятся в интервале 400—700 нм, а межплоскостные расстояния в кристаллических решетках изменяются в пределах 1 нм. Вот почему для структурного анализа используют рентгеновские лучи, длина волн которых 10 — 103 нм ) [c.115]

    Структурная кристаллография исследует закономерности внутреннего строения кристаллов. Рентгенография исследует структуру кристаллов, анализируя дифракцию рентгеновских лучей от кристалла. Кристаллическим называют вещество, чьи частицы закономерно периодически повторяются в пространстве. Согласно одному из распространенных определений, кристаллом называется однородное анизотропное тело, способное самоог-раняться. Однородность кристалла проявляется в постоянстве химического и фазового состава его, в неизменности его скалярных свойств. Анизотропия кристалла состоит в том, что векторные свойства его могут оказаться разными, будучи измеренными в различных направлениях. Наконец, способность самоограняться есть также следствие правильного внутреннего строения кристаллического тела, благодаря которому атомы кристалла располагаются на определенных прямых (потенциальных ребрах кристалла) и плоскостях (потенциальных гранях кристалла). Малые скорости зарождения и роста приводят к возникновению крупных одиночных правильно ограненных кристаллов. Высокие скорости зарождения и роста приводят к конкурирующему росту множества зародившихся в расплаве или растворе микроскопически мелких кристаллов до их случайного столкновения друг с другом с образованием поликристаллического конгломерата. Минералы принадлежат к веществам, способным образовывать крупные монокристаллы, металлам же и сплавам свойственны высокие скорости зарождения и роста, поэтому они чаще дают поликристаллические массы, не имеющие огранки. Плоские грани и прямые ребра можно, однако, увидеть и у металлических кристаллов со свободной по- [c.10]


    Рентгеноструктурный анализ позволяет получать обширную информацию о строении полимеров и его изменении в результате тепловых, механических и других воздействий, о фазовых превращениях и конформации макромолекул, о характере ориентации кристаллографических и молекулярных осей в кристаллографической ячейке и их изменении в результате внешних воздействий. Кроме того, рентгеноструктурный метод дает возможность определять средние размеры и распределение по размерам кристаллитов, степень дефектности кристаллической структуры и. многое другое. Дифракция рентгеновских лучей под малыми углами дает основание для суждения о величине большого периода и его изменении при различных термомеханических воздействиях, о состоянии (плотности) аморфных прослоек, а также позволяет регистрировать возникновение мельчайших (субмикроскопических — до 10—100 А) трещин в полимерах. Особая ценность методов [c.81]

    В 1912 г. Лауэ предположил, что длина волны рентгеновских лучей может быть примерно равной расстоянию между атомами в кристалле таким образом, кристалл может служить дифракционной решеткой для рентгеновских лучей. Этот опыт был проведен Фридрихом и Книппингом, которые действительно наблюдали дифракцию. Вскоре Брэгг (1913 г.) улучшил эксперимент Лауэ в основном путем замены монохроматического излучения полихроматическим и тем, что дал физическую интерпретацию теории рассеяния Лауэ. Брэгг также определил структуру ряда простых кристаллов, включая Na l, s l и ZnS. Со времени возникновения рентгеновской кристаллографии как науки рентгеноструктурный анализ монокристаллов превратился в наиболее широко применяемый и самый мощный метод определения расположения атомов в твердом теле. После 50-х годов с появлением быстродействующих электронно-вычислительных машин, способных обрабатывать рентгенографические данные, стал возможен более детальный анализ структуры таких сложных соединений, как белки. [c.565]

    Комплексы металлов с аминокислотами и пептидами в течение многих лет служили химикам, занимающимся изучением комплексных соединений, и биохимикам благодатным материалом в их исследованиях. Твердые производные Си(II) и Pt(II) с аланином были выделены Стрекером в 1850 г. [1], а еще раньше темнокрасное окрашивание, возникающее в присутствии солей Си(II) и щелочи, было использовано Видеманом (1847 г.) для того, чтобы охарактеризовать только что открытое соединение биурет [2]. Упариванием раствора Видеман получил кристаллический, но нечистый продукт при этом он отметил, что необходимо использовать избыток биурета для возникновения цветной реакции, если в качестве щелочи использовался гидроксид аммония. Прошло более ста лет, прежде чем структура этих кристаллов была установлена методом дифракции рентгеновских лучей, и почти столько [c.151]

    Единственным методом, который позволяет определить пространственные координаты большинства атомов биополимера (как правило, всех, кроме атомов водорода), является рентгеноструктурный анализ. Он применим к тем биополимерам, которые могут быть получены в виде кристаллов достаточно большого размера, по крайней мере несколько десятых долей миллиметра. Для биополимеров, имеющих вытянутую периодическую пространственную структуру, например для двунитевых спиральных структур нуклеи1швых кислот, геометрические параметры, описывающие основные элементы структуры, могут быть получены исследованием дифракции рентгеновских лучей на ориентированных нитях этих биополимеров. Именно такие данные, полученные для нитей ДНК английскими учеными Уилкинсоном и Розалинд Франклин, позволили Уотсону и Крику предложить пространственную структуру ДНК в виде двойной спирали. Возможность получения белка, нуклеиновой кислоты или их комплекса в виде кристалла достаточно высокого качества является основным ограничением на пути исследования пространственной структуры биополимеров. Одним из факторов, осложняющих кристаллизацию, является неизбежное возникновение конвекционных токов. В связи с этим определенные надежды на улучшение процедур кристаллизации возлагаются на выращивание кристаллов в условиях невесомости на орбитальных космических станциях. [c.309]

    Поскольку определение параметров ячейки по картине дифракции рентгеновских лучей (или электронов) не всегда является однозначным даже в случае низкомолекулярных кристаллических тел, то такое определение в случае кристаллических полимеров, дающих значительно менее четкие картины рассеяния, приобретает сплошь и рядом чисто формальный характер. Этот формализм в истолковании рентгенограмм и электронограмм приводит пе только к ошибочным выводам о строении кристаллических полимеров, но и служит причиной долго существовавшего заблуждения о кристалличности целлюлозы 122], история возникновения которого весьма поучительна. [c.80]

    В основе рентгеноструктурного анализа лежит взаимодействие рентгеновского излучения с электронами вещества, в результате которого возникает дифракция рентгеновских лучей с длиной волны -0,1 нм. Последние рассеиваются на электронных оболочках атомов. Интерференция волн, рассеянных веществом, приводит к возникновению дифракционной картины, что позволяет зарегистрировать рентгенограмму. При рассеянии ыа кристалле можно рассматривать дифракцию как отражение рентгеновских лучей плоскостями кристаллической решетки- Дифракция наблюдается, если рассеянные волны находятся в фазе, т.е, разность хода лучей равна целому числу волн п. [c.203]


    На протяжении последних пятнадцати лет получены важные результаты большого числа теоретических и экспериментальных работ, посвященных дифракции рентгеновских лучей в кристаллах с весьма совершенной структурой. Хотя существенное содержание динамической теории рассеяния в подобных кристаллах было разработано еще в 1913—1917 гг. Дарвином и Эвальдом, новые данные, имеющие принципиальный характер, привели к возникновению особого раздела физики твердого тела. [c.3]

    Для получения дополнительной информации можно использовать два других эффекта, связанных с явлением светорассеяния. Во-первых, свет, рассеянный различными центрами, может интерферировать это приводит к изменению интенсивности рассеянного света в зависимости от угла рассеяния. Этот эффект, как и при дифракции рентгеновских лучей, можно использовать для определения расстояний между частицами. Во-вторых, если рассеивающие центры асимметричны и имеют различные показатели преломления в двух или трех взаимно перпендикулярных направлениях, то может происходить деполяризация рассеянного света. Это обусловливает возникновение двулучепреломления, наблюдаемого в скрещенных поляроидах для пленок большинства полимеров. Штейн и сотр. развили и применили этот метод главным образом для изучения структуры за- [c.72]

    Кристаллическая решетка белков, не содержащих аномально рассеивающих центров, дифрагирует рентгеновские лучи от обычной трубки с медным анодом нормально. Аномальное рассеяние в этом случае отсутствует, так как частоты собственных колебаний атомов Н, С, N, О и S весьма далеки от частоты ш А -излучения для возникновения резонанса. Общая дифракция белкового кристалла, обладающего аномально рассеивающими центрами, описьшается для каждого измеренного рефлекса структурным фактором Fj h). Он включает нормальную часть — состоящую из рассеивающих компонент от всех атомов структуры белка, и аномальную часть. Последняя равна произведению нормальных компонент аномально рассеивающих центров [ д(/г)] на отношение факторов аномального к нормальному рассеянию —Следовательно, [c.158]

    Совсем недавно было опубликовано сообщение о том, что стереоизо-мерные формы одного и того же полимера образуют ассоциаты, возникновение которых сопровождается резким снижением растворимости. Вата-набе и др. [204] обнаружили, что смешение разбавленных растворов изотактического и синдиотактического полиметилметакрилата в хорошем растворителе приводит к мгновенному образованию геля. Полученный гель давал картину резкой дифракции рентгеновских лучей и имел хорошо выраженную температуру плавления, на которой совершенно не сказывалось соотношение двух полимерных компонентов при смешении. На основе этих данных можно предположить, что из двух стереоизомерных полимеров образуется стехиометрический комплекс. Природа этого комплекса была выяснена Ликвори и др. [205]. Их результаты будут обсуждены в гл. VIII. Подобный вывод может быть сделан на основе данных, полученных Иошида и др. [206], о том, что смешение растворов поли-у-метил-L-глутамата и поли-у-метил-В-глутамата в диметилформамиде приводит к осаждению оптически неактивного материала, в каком бы соотношении оптически активные полимеры ни смешивались. Эти результаты имеют очень большое значение, так как они показывают, что характерное для специфического взаимодействия белков образование комплексов в соответствии со стереохимическими соотношениями (например, образование комплексов фермент-субстрат и антиген-антитело) не всегда ограничивается макромолекулами, возникающими в живых организмах. [c.84]

    Корреляция между спектрами и конфигурациями ближайших соседних атомов в теории Кронига, пожйлуй, аналогична корреляции между дифракцией рентгеновских лучей жидкостями и их дифракцией кристаллическими твердыми телами. Фотоэлектроны имеют такую низкую энергию, что когерентность длины волны может быть утрачена через несколько атомных расстояний. Это должно означать, что процесс поглощения, приводящий к возникновению медленных фотоэлектронов, включает конечные состояния, плотность которых не имеет флуктуаций относительно энергий. Однако для процесса поглощения вероятность изменений зависит от энергии из-за флуктуаций электрического ноля, окружающего атом для этих флуктуаций параметр расстояния равен по порядку величины длине волны, связанной с фотоэлектроном. Считается, что в данном случае ноле рассеивает с большей или меньшей эффективностью фотоэлектрон данной длины волны от центра исходного атома. [c.159]

    Поскольку для возникновения оптической активности соединений необходимы те же условия, что и для проявле-иия оптической изомерии, неудивительно, что при изучении абсолютной конфигурации наибольшее внимание уделялось методам, основанным на измерении оптической активности дисперсии оптического вращения и круговому дихроизму (гл. 5). Однако в большинстве случаев с их помощью можно только сопоставлять конфигурации. Для установления же абсолютных конфигураций их следует Дополнять другими методами, позволяющими получить данные по абсолютной конфигурации модельных соединений, такими, как аномальная дифракция рентгеновских лучей (гл. 4). [c.28]


Смотреть страницы где упоминается термин Рентгеновские лучи возникновение дифракция: [c.400]    [c.511]    [c.218]    [c.302]    [c.119]    [c.84]    [c.400]   
Курс неорганической химии (1963) -- [ c.230 , c.231 , c.241 ]




ПОИСК





Смотрите так же термины и статьи:

Дифракция

Дифракция рентгеновских лучей

Лучи рентгеновские

Рентгеновская дифракция

возникновение

лучами рентгеновскими лучами



© 2025 chem21.info Реклама на сайте