Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение полимеров кристаллических

Рис. VI. И. Схема строения аморфно-кристаллического полимера по электронномикроскопическим данным Рис. VI. И. Схема <a href="/info/1779368">строения аморфно-кристаллического полимера</a> по электронномикроскопическим данным

    Заслуживает особого внимания открытие метода синтеза высокомолекулярного полимера углерода (карбина) (Сладков, Касаточкин, Кудрявцев, Коршак [324]). Исходным веществом служит ацетилен реакция осуществляется в среде органического основания в присутствии солей меди и хлорного железа. Как показали исследования свойств и строения полимера, кристаллическая фракция карбина содержит до 2000 атомов углерода в цепочке и представляет собой новую аллотропную его модификацию-, обладающую свойствами полупроводников с электронной проводимостью. [c.44]

    Что же касается измерения степени кристалличности образца, то для этой цели с успехом применяются методы измерения плотности, теплот плавления, метод рентгеновской дифракции, метод инфракрасной спектроскопии, метод ЯМР широких линий и т. д., которые основаны па модели двухфазного строения полимеров, т. е. наличие кристаллических и некристаллических (аморфных) областей. Однако в данном случае возникает принципиальный вопрос о правомочности отнесения складок к аморфным участкам. Три последних метода, в которых применяется облучение образцов, позволяют в принципе измерять анизотропию их кристалличности, если образцы получены прессованием большого числа пластинчатых кристаллов. В этом смысле перечисленные методы дают информацию непосредственно о структуре поверхностного слоя, содержащего складки. В частности, как показывают результаты исследования методом ЯМР, относительное содержание участков, обладающих подвижностью, не превышает нескольких процентов. Отсюда следует, что на поверхности монокристаллов находится слой полимера, свойства которого близки к свойствам аморфного образца [52—54]. Кроме того, оказалось, что значения степени кристалличности монокристаллов полиэтилена, определенные перечисленными выше методами, находятся в пределах 80—90% [55—59]. [c.231]

Рис. VI. 12. Схема строения аморфно-кристаллического полимера по рентгенографическим данным Рис. VI. 12. Схема <a href="/info/1779368">строения аморфно-кристаллического полимера</a> по рентгенографическим данным
    Для полимеров наиболее характерно аморфное состояние, однако в определенных условиях они могут переходить (частично или полностью) в кристаллическое. Необходимое условие кристаллизации— регулярность строения полимера. Процесс кристаллизации совершается при некоторых оптимальных значениях Т и гибкости цепи, ибо слабое тепловое движение не может обеспечить необходимой ориентации звеньев, а слишком интенсивное — ее нарушает. Температуру, выше которой полимер практически не кристаллизуется, называют температурой кристаллизации. При [c.307]


    Характер морфологии цепей в кластерах очевидно определяется химическим строением полимера, его молекулярной массой и в значительной степени параметрами сетки зацеплений [37]. Если расстояние между соседними узлами сетки зацеплений достаточно велико и соответствует длине нескольких десятков (или больше) мономерных звеньев (у атактического полистирола, например, 45—60), то очевидно, что наиболее вероятной внутри кластера будет складчатая конформация цепи. Такая картина, по-видимому, должна наблюдаться для многих не слишком жесткоцепных полимеров. Если расстояние между соседними узлами сетки зацеплений включает несколько повторяющихся звеньев, то очевидно, что наиболее вероятной внутри кластера будет конформация, соответствующая развернутой цепи. В рамках такой модели становится понятным, что максимально возможная для данного аморфного полимера объемная концентрация ф1 кластеров (как и максимальная степень кристалличности у, у кристаллического полимера) задается параметрами сетки зацеплений. Кластерная модель устанав- [c.69]

    В узлах атомной кристаллической решетки находятся атомы одинаковых или различных элементов, соединенные между собой ковалентными связями. В последнее время эти структуры часто относят к неорганическим полимерам. Типичными примерами таких веществ являются алмаз и кварц. Строение атомных кристаллических решеток определяется валентностями образующих их элементов и направленностью связей. [c.78]

    В принципе кристаллические полимеры могут иметь самые различные коэффициенты молекулярной упаковки. При этом величина к зависит как от химического строения полимера, так и (в меньшей степени) от типа элементарной ячейки. [c.140]

    Тепловое поведение полимерных материалов является их важнейшей характеристикой, определяющей выбор пластмасс и их эффективное использование. Большинство пластиков отчетливо реагирует на, как принято говорить, температуру. Причина этого заключается в цепном макромолекулярной строении полимеров. Чем подвижнее кинетические фрагменты макромолекул, тем рельефнее их реакция на интенсивность теплового поля. Подвижность же макроцепей и, следовательно, температурная деформируемость и прочность определяются химическим строением, физической организацией полимеров (кристаллические или аморфные), морфологией их надмолекулярной структуры (пачечная, фибриллярная, сферолитная, сетчатая), видом и интенсивностью межмолекулярных связей [c.103]

    Во-первых, ири низких температурах можно описать физические свойства как кристаллических, так и аморфных полимеров, находящихся в стеклообразном состоянии, используя идеи и представления современной физики твердого тела. Во-вторых, поведение полимеров, находящихся в высокоэластическом состоянии, может быть описано в рамках представлений статистической физики и термодинамики. Хронологически раньше была разработана статистическая физика полимеров, находящихся в высокоэластическом состоянии, которая позволила объяснить наиболее важную и специфическую особенность полимеров — способность испытывать большие обратимые деформации. Это оказалось возможным сделать в силу того, что у разных по химическому строению полимеров оказалась одна общая черта — в высокоэластическом состоянии у всех полимеров существует внутреннее вращение. Следует заметить, что использование основных представлений и математического аппарата статистической физики для описания поведения полимеров, находящихся в высокоэластическом состоянии, возможно в первую очередь благодаря тому, что полимерные молекулы состоят из очень большого числа одинаковых повторяющихся звеньев и еще большего числа атомов. [c.17]

    Наконец, анализ дефектности кристаллических структур и влияния на нее условий кристаллизации и молекулярного строения полимеров позволил В. А. Каргину впервые, в свете новых данных о структуре кристаллических полимеров, критически рассмотреть понятие степень кристалличности и показать, что это понятие не только малосодержательно с чисто физической точки зрения, но и является крайне недостаточной характеристикой материала без учета типа, размеров и относительного расположения элементов кристаллических образований. [c.9]

    Появление новых синтетических хорошо кристаллизующихся полимеров привлекло внимание В. А. Каргина к изучению зависимости механических свойств полимеров от их фазового состояния. Им был выполнен совместно с Т. И. Соголовой цикл систематических исследований механических свойств кристаллических полимеров. Этими работами были установлены закономерности деформирования таких полимеров в широком интервале температур, но в пределах их кристаллического состояния, в зависимости от химического строения полимеров и их молекулярного веса. В этих работах были выдвинуты также представления о процессе холодной вытяжки кристаллических полимеров (образование шейки) как о фазовом превращении полимера в механическом анизотропном силовом поле. Представлял также интерес цикл исследований температурных переходов полимеров с использованием для этих исследований термомеханического метода, который был осу- [c.11]


    Наблюдан)щиеся особенности свойств кристаллических полимеров принято объяснять наличием в них аморфной фазы, хотя принципиально возможно, что эти особенности связаны с иным строением кристаллов высокополимерных веществ. Этот важный вопрос практически никогда не рассматривался и был обсужден лишь в последнее время [2—8]. Более того, при рассмотрении механических свойств кристаллических полимеров кристаллической фазе обычно отводится второстепенное место, так как считается, что кристаллические полимеры двухфазны, причем определяющей механические свойства является аморфная фаза, способная кристаллизоваться при деформации. Одна]<о совсем недавно [2—6, 9] высказана противоположная точка зрения, состоящая в том, что основную роль при деформации кристаллических полимеров играют кристаллы полимеров. Поэтому необходимо подвергнуть анализу накопившиеся фактические данные о кристаллах полимеров и установить, какая из этих точек зрения подтверждается опытом. Необходимо также выделить те теоретические и экспериментальные вопросы, разрешение которых позволит подойти к построению теории физических свойств кристаллических полимеров. [c.78]

    Независимость температуры плавления кристаллического полиэтилена от наполнения его химически инертными твердыми веществами и в то же время изменение комплекса его механических свойств свидетельствуют о том, что твердые наполнители разрушают только вторичные структуры в полимере, не затрагивая строения первичных кристаллических областей. [c.129]

    В четвертой главе подробно освещен термомеханический метод определения температуры стеклования и текучести полимеров, проанализированы особенности интерпретации термомеханических кривых для аморфных и кристаллических полимеров, приведен расчетный метод определения по химическому строению полимера величины механического сегмента. Рассмотрены две основные концепщш механизма процессов застекловьшания полимеров - релаксационная и межмолекулярная. Рассматривается более универсальный, чем широко распространенный групповой подход расчета свойств полимера по их химическому строению, атомистический подход, с использованием которого получены аналитические выражения для расчета по химическому строению температуры стеклования линейных и сетчатых полимеров. Выполнен анализ влияния типов разветвлений линейных полимеров, а для сетчатых полимеров - числа звеньев между узлами сшивки, типа и строения этих узлов, наличия и вида дефектов сетки на температуру стеклования полимеров. [c.15]

Рис. 4. Схема строения ориентированного кристаллического полимера Рис. 4. <a href="/info/325342">Схема строения</a> ориентированного кристаллического полимера
    Димеры пропилена применяются в качестве антидетонационных компонентов моторных масел и в качестве промежуточных продуктов-в производстве фталевых пластификаторов. Высшие полимеры кристаллического строения молекулярного веса порядка одной тысячи представляют собой очень ценные пластические материалы некоторые из них могут подвергаться прядению. [c.394]

    Наличие в строении полимера кристаллических зон затрудняет получение многослойных покрытий, так как при нанесении последующего слоя растворитель вызывает набухание отдельных участков предыдущих слоев, что приводит к их сморщиванию. Это предотвращают, приготовляя летучую часть лаков в виде смесей активных растворителей (кетонов и сложных эфиров) с разбавителями (спиртами, целлозольвом, ароматическими углеводородами). Типы и дозировки вводимых разбавителей выбирают с учетом обеспечения адгезии между слоями покрытия и стабильности лаков в течение не менее 3—4 месяцев. Хорошие результаты получаются со смесью 15% ацетона, 10% циклогексанона, 30% этилацетата, 30% амилацетата, 15% целлозольва . Получаемый при растворении полимера в этой смеси лак рабочей вязкости содержит 8— 12% полимера. [c.315]

    В процессе радикальной полимеризации можно воздействовать только на )еакцию инициирования, которая явл5[ется регулируемой. Однако строение полимера определяется реакцией роста, которая не зависит от свойств и1шциатора и способа hhj-i-циирования. Снижением температуры радикальной полимеризации до 015° мсжно добиться повышения степени регулярности строения макромолекул вследствие уменьшения их разветвленности, однако достигаемый при этом эффект сравнительно невелик. Более регулярные полимеры могут быть получены методом радикальной полимеризации при температуре от —30 до —80". Например, при температуре—40 был синтезирован кристаллический полиме-тилметакрилат .  [c.133]

    Бонаром и Хоземаном предложена одна из возможных схем строения ориентированных кристаллических полимеров (рис. VI 10). Согласно этой модели часть молекул на границе кристалла с аморфной областью сворачивается на себя и возвращается в кристалл, образуя складки. Подобных представлений о строении ориентированных полимеров придерживаются также Келлер, Флори, Петерлин и Скульо, считающие, что надмолекулярная структура ориентированных кристаллических полимеров представляет собой [c.198]

Рис. VI. 14. Схема строения аморфно-кристаллического полимера по Хоземану — Бонару — Келлеру. Рис. VI. 14. Схема <a href="/info/1779368">строения аморфно-кристаллического полимера</a> по Хоземану — Бонару — Келлеру.
    Формулы (VI. 22) дают начальный коэффициент концентрации. С течением времени I он будет увеличиваться, так как из-за разрывов связей число проходных цепей уменьшается. Разрыв будет происходить ио наиболее слабым аморфным прослойкам, для которых характерен наибольший коэффициент концентрации р. Если случайно наиболее слабые аморфные прослойки из соседних фибрилл (см. рис. VI. 11) оказываются расположенными рядом, то такое состояние их будет являться дефектом структуры. Сами прослойки нельзя называть дефектами, ибо они характерны для строения аморфно-кристаллических полимеров и являются элементами их структуры. Дефектом целесообразно считать аномаль- [c.213]

    При контакте ннзкомолекуляр юго реагента с полимером в реакцию сразу вступают только функциональные группы, расположенные на поверхности. К функциональным группам, не расположенным на поверхности полимера, реагент должен предварительно продиффундировать сквозь слон полимера. Продолжительность диффузии определяется не только условия- <4 реакции, химическим строением полимера н низкомолеку- лярного реагента, но и плотностью упаковки макромолекул Полимера. Так как в аморфных областях упаковка макромо- чскул более рыхлая, чем в кристаллических, продолжительность контакта к полнота реакции низкомолскулярного реагек- 3 с макромолекулами, расположенными в аморфных областях, [c.161]

    П. Особенность поведения (природы и т. д.), обусловленная структонным строением полимера (см. гл. XV). Узлы-структоны сами могут обладать разнообразной внутренней структурой — вплоть до собственно кристаллической, как в хоземанновской решетке, моделирующей кристалло-аморфный полимер. [c.110]

    Стереорегуля рные эластомеры и жесткоцепные полимеры могут находиться как в кристаллическом, так и в аморфном состоянии, а полимеры, молекулярные цепи которых не имеют регулярного строения — только в аморфном. Большинство синтетических эластомеров и других полимеров состоят из звеньев различного химического строения или звеньев одного и того же химического состава, но различных стереоизомер-ных форм и являются в основном аморфными. Следовательно, аморфное состояние для полимеров является весьма распространенным. Однако, этому состоянию стали уделять внимание сравнительно недавно. По свидетельству Джейла [1], первыми, кто начал изучение морфологического строения полимеров в аморфном состоянии, были Каргин, Китайгородский и Слонимский [2], так как ранее предполагалось, что в аморфном состоянии отсутствует какое-либо упорядочение взаимодействия молекулярных цепей. [c.73]

    Явление холодной вытяжки наблюдается как для кристаллических (например, найлона и полиэтилена [54]), так и для аморфных (например, полиметилметакрилата и юлиэтиленметилтерефталата [55—57]) полимеров. При этом, хотя в обоих случаях общим эффектом, связанным с холодной вытяжкой, остается молекулярная ориентация, приводящая к распрямлению макромолекулярных цепей в направлении, параллельном оси вытяжки, морфологические превращения существенно зависят от особенностей строения полимера. Так, при растяжении аморфизованного полиэтилентерефталата в процессе холодной вытяжки происходит его частичная кристаллизация, а нри растяжении натрийтимонуклеата наблюдается прямо противоположный эффект перехода при растяжении кристаллических волокон в аморфное состояние [58]. [c.298]

    В некоторых работах при описании строения полимеров моделью паракристалла авторы ошибочно, с нашей точки зрения, связывают понятие паракристалл с наличием в образце протяженных, ламелярных образований, подобных представленным на рис. II. 5, стр. 92. К сожалению, фотография своеобразного рельефа на песчаном морском берегу, часто приводимая в работах Хоземанна, внесла некоторую путаницу в этот вопрос. Как неоднократно подчеркивал сам Хоземанн, понятие паракристалл отнюдь не обязательно относится к слоевым структурам. Обычно это есть описание типа, способа укладки тех или иных структурных элементов в одномерной, двумерной или трехмерной решетке. Понятие паракристалла может быть отнесено и к отдельному кристаллиту — в этом случае имеется паракристаллический порядок в расположении межплоскостных расстояний элементарных ячеек кристаллита его можно отнести и к отдельной микрофибрилле — в этом случае имеется паракристаллический порядок в расположении аморфных и кристаллических областей вдоль микрофибриллы. Может оно характеризовать и более протяженные, ламелярные образования и т. д. [c.150]

    Трудность физического описания кристаллизующихся полимеров заключается в том, что они представляют собой смесь твердых (кристаллических) и жидких (аморфных) областей. В случае низкомолекулярных соединений исследование кристаллов, в которых молекулы расположены в определенном порядке, не сопряжено с какими-либо трудностями благодаря тому, что теория твердого тела разработана гораздо лучше теории жидкого состояния. Разумеется, метод, например, дифракции рентгеновского излучения является достаточно эффективным и нри исследовании молекулярного строения полимеров, однако в этом случае на рентгенограммах уже не наблюдаются такие же четкие рефлексы, как, в частности, в случае металлов к тому же практически отсутствуют рефлексы более высоких порядков. Причина этого, естественно, заключается в том, что полимеры не сдособны закристаллизоваться нацело , в результате чего в них всегда имеются некристаллические участки. Другая причина состоит в том, что даже в закристаллизованных участках имеются дефекты, природа которых, однако, совершенно ин1я, чем дефектов кристаллической решетки металлов. В случае металлов можно говорить о монокристаллах и их агрегатах и, таким образом, вести обсуждение в терминах ноликристаллической структуры. [c.168]

    Основные научные работы относятся к химии высокомолекулярных соединений. В начале своей научной деятельности (до 1928) занимался химией ацетиленовых соединений, осуществил синтез по-лиацетнлена. Был сторонником выдвинутой Г. Штаудингером макромолекулярной теории строения полимеров и способствовал ее утверждению, доказав существование соединений присоединения к целлюлозе гидроксидов щелочных металлов, воды и кислот. С помощью рентгеноструктурного анализа изучал (1931) различные кристаллические модификации целлюлозы и продукты присоединения к ней, фибриллярные белки. Исследовал межмолекулярное взаимодействие в полимерах и его влияние на когезию. Осуществил синтез волокнообразующего полиамида поликонденсацией 11-аминоундекановой кислоты. Установил (1948) линейную зависимость между температурами плавления полиамидов и числом межмолекулярных водородных связей. Синтезировал заме--щенные полиамиды трехмерной структуры (благодаря наличию ди-сульфидных мостиков), а также замещенные целлюлозы, например аминоцеллюлозу. [c.562]

    Продукт. Свойства макромолекул зависят непосредственно от их строения. В случае полимеров пропилена, известных под названием полипропилен, разнообразие строения очень незначительно и выражено только положением метильных групп. Упорядоченное строение дает кристаллическую форму, а неупорядоченное — аморфную. Кристаллическое строение также не идеально, так как из 100 метильных разветвлений, связанных с четными углеродными атомами нолипропиленовой цепочки, одно метильное разветвление связано [c.411]

    На основании полученных результатов структура шашлыкоподобного типа может быть представлена следующим образом самая высокомолекулярная фракция полидисперсного полимера образует главный хребет, близкий по своему строению к кристаллическим структурам, образованным распрямленными макромолекулами. Ламелярные отростки построены из складчатых цепей и име.ют, по-видимому, слоистую структуру (па это указывает молекулярный вес полимера) с распределением образца по молекулярным весам. [c.118]

    Вопрос о химическом строении этих кристаллических низших полимеров циклопентадиена до сих пор не вполне решен. Есто имеет место 1,2чприсоедине-ние, то строение дициклопентадиена можно представить следующей формулой  [c.682]

    Представления о строении полимерных те.л прошли сложную эволюцию от мицеллярных теорий к современным концепциям структурной физики полимеров (см. Структура, Надмолекулярная структура. Кристаллическое состояние, Аморфное состояние. Коллоидные полимерные системы). Несостоятельность мицеллярных теорий строения линейных гомоиолимеров с однородными по строению цепями макромолекул (нанр., целлюлозы, натурального каучука) заключается в отсутствии физич. причин существования устойчивых фазовых частиц коллоидных размеров. Развитие представлений о макромолекулах, пе отличающихся от малых молекул природой сил межмолекулярного взаимодехгствия, исключило возможность научного обоснования мицеллярных представлений о строении поли.меров и их р-ров. Здесь следует еще раз подчеркнуть, что имеются в виду макромолекулы, лишенные дифильности в упомянутом выше смысле. Гибкие макромолекулы, содержащие разнородные но полярности участки, в определенных условиях могут давать микро-гетерогснные системы типа лиофильных золей. При этом лиофобные группы макромолекул объединяются в ядре коллоидной частицы (нанр., белковой глобулы), а лиофильные образуют ее поверхностный слой. Представления о мицеллярном строении полимеров [c.131]


Смотреть страницы где упоминается термин Строение полимеров кристаллических: [c.33]    [c.109]    [c.222]    [c.19]    [c.143]    [c.396]    [c.49]    [c.143]    [c.221]    [c.114]    [c.316]    [c.40]    [c.323]   
Свойства и химическое строение полимеров (1976) -- [ c.31 ]

Свойства и химическое строение полимеров (1976) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллическое строение

Полимеры строение



© 2025 chem21.info Реклама на сайте