Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дифракция рентгеновских луче жидкостей

    В кристалле компоненты (молекулы или группы молекул) расположены регулярно. Центры тяжести различных групп размещены в трехмерной периодической решетке. В жидкости центры тяжести в этом смысле не упорядочены. Наиболее очевидно различие механических свойств этих двух состояний вещества жидкость легко течет. Более фундаментальным является различие картин дифракции рентгеновских лучей жидкости и кристалла последнему свойственны резкие брэгговские отражения, характерные для решетки. [c.13]


    Изучение дифракции рентгеновских лучей дает информацию о пространственной решетке вещества. Количественно они дают внутриатомное расстояние в кристаллах и более грубо — в жидкостях. Кроме того, на регулярность ориентации указывает разность линий и колец. Дифракционные спектры рентгеновских лучей жидкостей показывают лишь расстояние, при которых молекулы размещены более регулярно — с некоторым указанием на основную молекулярную структуру. Испытание некоторых простых [c.187]

    Радиометрические методы в последнее время стали применять для изучения структурных изменений граничных слоев жидкостей в поле твердой поверхности. К ним относятся прямые структурные методы дифракции рентгеновских лучей, радиационные методы и ИКС-, ЯМР-методы. [c.76]

    Дифракция рентгеновских лучей наблюдается в газах, жидкостях и аморфных веществах, наиболее четко она проявляется на кристаллах. На дифракции рентгеновских лучей кристаллами основаны разработанные позднее рентгеноструктурный и рентгенофазовый методы анализа. Суть дифракции рентгеновских лучей заключается в сложении амплитуд вторичных волн, рассеянных электронами, образующими электронные оболочки атомов исследуемого вещества, без изменения частоты колебаний. Схематически дифракция рентгеновских лучей представлена на рис. 5.4. [c.116]

    В основу классификации экспериментальных методов рентгенографии можно положить либо способ регистрации дифракционного спектра (фотографический или ионизационный), либо агрегатное состояние исследуемого объекта (поли- или монокристалл, аморфное вещество, жидкость или газ). Несмотря на существование единого физического подхода к проблеме дифракции рентгеновских лучей (см. Введение и гл. I), различия в методических особенностях экспериментальных исследований различных объектов весьма существенны и приводят к появлению специальных областей рентгеноструктурного анализа. Например, значительная информация о белках, полимерах и ряде других объектов сосредоточена в области малых углов рассеяния от нескольких угловых минут до 3—5 градусов. С позиций физики рассеяния рентгеновских лучей между этой и всей остальной частью дифракционного спектра нет никакой принципиальной разницы, однако, специфические экспериментальные трудности, в первую очередь — малая интенсивность рассеянного излучения, привели к созданию специального рентгеновского оборудования — малоугловых рентгеновских камер и дифрактометров [1]. [c.111]


    В отличие от кристаллов, в жидкостях при практически той же средней плотности распределения вещества дальний порядок отсутствует. Есть только ближний порядок, т. е. правильность расположения молекул или атомов в непосредственной близости от данной центральной молекулы, резко нарушающаяся с расстоянием. Такой ближний порядок, как и дальний порядок в кристаллах, может быть количественно изучен с помощью современных методов структурного анализа — по дифракции рентгеновских лучей или электронных пучков с длиной волны, соизмеримой с межмолекулярными расстояниями. [c.171]

    Обнаружение в опытах по дифракции рентгеновских лучей ближней упорядоченности в жидкостях, близкая аналогия многих свойств жидкостей я [c.201]

    Гипотеза о том, что в целом структура воды подобна структуре льда (эта гипотеза, конечно, допускает существование большего беспорядка в жидкости, чем в твердом теле), подтверждается исследованиями дифракции рентгеновских лучей. Из рентгенограмм воды при различных температурах (1.5- Ч-83°С) были получены кривые радиального распределения, откуда далее из площадей пиков можно оценить среднее число соседних молекул на различных расстояниях. Первый пик на кривой означает, что при 1,5°С у каждой молекулы воды в среднем имеется 4,4 соседние молекулы на среднем расстоянии 2,90 А прп 83°С соответствующие цифры равны 4,9 молекулы и 3,05 А. За первым пиком кривая постепенно выходит на плохо разрешенный максимум в области 4,5—4,9 А, который указывает на существование молекул, находящихся между ближайшим и следующим за ближайшим окружением в структуре льда (2,8 и 4,5 А). Вследствие того что кривая радиального распределения содержит лишь небольшое число сравнительно хорошо разрешенных пиков, она может быть интерпретирована многими способами. [c.389]

    Жидкие криста/ты. Некоторые чистые жидкости в 1978 г. их насчитывалось более 6000) и еще большее число смесей обладают свойствами, гораздо более присущими твердым кристаллам, а именно для них характерны оптическая анизотропия, дифракция рентгеновских лучей и ряд других определенных электрических и термических свойств. Более того, их свойства претерпевают резкие изменения при определенных температурах, что свидетельствует об изменениях, происходящих [c.457]

    Представляет интерес изобразить спектр Л -края поглощения в форме, сходной с уравнением дифракции. При обычной дифракции рентгеновских лучей или электронов газами, жидкостями или кристаллами общее уравнение дифракции выражает связь между отношением интенсивности рассеянного пучка h к интенсивности падающего пучка /о и величиной (sin 0) Д, где 6 — половина угла рассеяния [c.127]

    Цель данного обзора - обсуждение результатов изучения воды и ионных растворов, полученных методом дифракции рентгеновских лучей и относительно новым спектроскопическим методом неупругого рассеяния нейтронов (НРН). Недавние исследования, проведенные методом дифракции рентгеновских лучей, дали информацию относительно расстояний между ближайшими и более удаленными молекулами воды и координации пар типа вода—вода, ион—вода и ион-ион в растворе. Полученные данные позволяют также оценить радиус корреляции, среднее число соседних молекул в каждом типе и средние амплитуды колебаний. Результаты таких измерений можно использовать либо для построения моделей, либо для проверки имеющихся моделей, если они являются достаточно совершенными и позволяют количественно предсказать структурные характеристики. К сожалению, как отмечается в работе [5], рентгеновские исследования жидкостей дают информацию только о вероятности нахождения ряда атомных пар данного типа на некотором расстоянии от какого-либо атома. Эта информация является одномерной, тогда как представляющие интерес структуры являются трехмерными, и, следовательно, соответствие модели рентгеновским данным является необходимым, но недостаточным условием. [c.205]

    При температурах выше температуры хрупкости битумы являются высоковязкими жидкостями. В последние годы большое внимание уделялось изучению структуры в жидком состоянии. Начало исследованию структуры жидкостей было положено Дебаем [26], который открыл дифракцию рентгеновских лучей в жидкостях. В соответствии с этой дифракционной картиной было установлено, что в жидкостях имеется ближняя упорядоченность, которая при увеличении расстояния между частицами исчезает. [c.20]

    Как говорилось в гл. 31, картина дифракции рентгеновских лучей зависит от распределения электронов в рассеивающей системе. Очевидно, распределение электронов в жидкой ртути меняется с температурой. Аналогичное изменение наблюдается для всех жидкостей. С другой стороны, распределение электронов в идеальных газах и кристаллах не зависит от температуры и давления, хотя в сильно сжатом газе (который не является идеальным) наблюдаются изменения, сходные с изменениями, обнаруженными для жидкостей. [c.123]


    Структуру и динамику самых разнообразных жидкостей, начиная от жидкого водорода и кончая расплавленными силикатами, можно изучать посредством различных спектральных методов. Среди них наиболее важны дифракция рентгеновских лучей, нейтронография, ядерный магнитный резонанс, лазерная спектроскопия комбинационного рассеяния и рассеяние света. Одним из самых мощных новейших методов является импульсное лазерное возбуждение. В пикосекундном диапазоне (10 с) мы можем исследовать движение молекулы растворенного вещества внутри клетки молекул растворителя. Теперь можно непосредственно наблюдать за фундаментальными химическими событиями в реальном времени. Например, можно наблюдать, как два атома иода в жидкости соединяются в молекулу, как захватывается (сольватируется) жидкой водой свободный электрон, как энергия, поглощенная молекулой растворенного вещества (азот или бензол), передается от нее окружающим молекулам растворителя. [c.190]

    Сама природа жидкостей не позволяет дать такого детального описания их структуры, которое можно получить для газов и твердых тел. Это связано с тем, что число параметров, необходимых для того, чтобы охарактеризовать структуру газа или кристалла, ограничено в первом случае благодаря большим расстояниям между отдельными молекулами, а во втором — вследствие периодического характера кристаллической решетки. Что касается жидкостей, то дифракция рентгеновских лучей или нейтронов не дает достаточного количества данных для характеристики их структуры. Поэтому приходится пользоваться [c.301]

    Взаимное расположение молекул. Самой простой структурой обладают жидкости, состоящие из отдельных атомов (одноатомных молекул), которые в этом случае рассматривают как жесткие сферы. Такая модель хорошо описывает, например, структуру жидкого аргона. Однако даже в применении к самым простым, так называемым нормальным жидкостям эти структурные теории не дают удовлетворительных результатов, поскольку выводы из них не согласуются с экспериментом, если не использовать некоторые эмпирические соотношения [6]. Соотношения, полученные для жидкостей, состоящих из многоатомных несферических молекул, очень сложны, и выводы из них, касающиеся структуры этих жидкостей, носят скорее качественный или же полуколичественный характер. Наиболее важные экспериментальные данные по структуре жидкостей можно получить, изучая рассеяние рентгеновских лучей и нейтронов, измеряя равновесные термодинамические величины (плотность, сжимаемость, тепловые эффекты, давление паров), а также рассматривая неравновесные процессы переноса (вязкость, диффузию, электропроводность). Из экспериментов по дифракции рентгеновских лучей и нейтронов можно, зная положение первого максимума, найти функцию радиального распределения молекул. Эта функция определяет вероятность нахождения какой-либо молекулы вблизи данной молекулы в зависимости от расстояния до нее. Для жидкости, состоящей из сферически симметричных молекул, не имеющих внутренней структуры, можно теоретически вычислить функцию распределения для пары молекул, т. е. найти вероятность нахождения двух молекул на данном расстоянии / друг от друга в зависимости от расстояния Р между ними. Результаты расчетов можно затем сравнить с экспериментальными данными. Знание функции распределения— это тот минимум информации, который необходим для получения картины строения жидкости. [c.18]

    Функция радиального распределения, вычисленная из положения первого максимума в экспериментах по дифракции рентгеновских лучей и нейтронов, позволяет, хотя и не всегда однозначно, определить среднее расстояние между соседними молекулами, т. е. радиус координационной сферы и число ближайших соседей, т. е. координационное число. Эти два параметра определяют положение молекул, однако знание их еще недостаточно для описания структуры жидкости. В понятие структуры входит не только взаимное расположение молекул, но также и силы, возникающие при их взаимодействии, которые должны быть учтены при помощи по крайней мере еще одного параметра. Более тщательный анализ других максимумов при дифракции рентгеновских лучей, несомненно, приведет к более детальному пониманию структуры жидкостей. [c.19]

    Анализ функции радиального распределения, вычисленной из данных дифракции рентгеновских лучей и нейтронов, показал, что в жидкостях с простой структурой повышение температуры приводит прежде всего не к изменению расстояний между соседними атомами, а к уменьшению среднего числа [c.19]

    Корреляция между спектрами и конфигурациями ближайших соседних атомов в теории Кронига, пожйлуй, аналогична корреляции между дифракцией рентгеновских лучей жидкостями и их дифракцией кристаллическими твердыми телами. Фотоэлектроны имеют такую низкую энергию, что когерентность длины волны может быть утрачена через несколько атомных расстояний. Это должно означать, что процесс поглощения, приводящий к возникновению медленных фотоэлектронов, включает конечные состояния, плотность которых не имеет флуктуаций относительно энергий. Однако для процесса поглощения вероятность изменений зависит от энергии из-за флуктуаций электрического ноля, окружающего атом для этих флуктуаций параметр расстояния равен по порядку величины длине волны, связанной с фотоэлектроном. Считается, что в данном случае ноле рассеивает с большей или меньшей эффективностью фотоэлектрон данной длины волны от центра исходного атома. [c.159]

    НЕЙТРОНОГРАФИЯ — метод изучения структуры молекул, кристаллов, жидкостей с помощью дифракции (рассеивания) нейтронов имеет много общего с рентгегюграфией. Дифракция нейтронов — типичное оптическое явление, аналогичное дифракции рентгеновских лучей, в котором ярко проявляются волновые свойства нейтрона. Для нейтронографических исследований требуются пучки тепловых нейтронов высокой интенсивности. Поэтому Н. начала развиваться лишь после строительства ядерных реакторов. Для исследования структуры вещества узкий направленный пучок тепловых нейтронов из реактора падает на монокристалл. Отражение нейтронных волн от кристаллической поверхности происходит в результате взаимодействия нейтронов с ядрами кристалла. Чтобы определить структуру кристалла, надо измерить углы, под которыми наблюдаются отражения первого порядка и интенсивность его. Н. имеет ряд преимуществ по сра-внлшю с рентгенографией благодаря зк1 чительному расширениво числа объектов исследования. [c.172]

    Физические свойства вещества зависят от атомного состава, структуры, характера движения и взаимодействия частиц. Для определения этих параметров используются разнообразные физические методы исследования. К ним относятся методы, основанные на явлении дифракции рентгеновского излучения, электронов п нейтронов. Явление дифракции рентгеновских лучей на монокристаллах было открыто М. Лауз в 1912 г. Оно явилось началом рентгеноструктурного анализа твердых тел, жидкостей и газов. Советские ученые А. Ф. Иоффе, С. Т. Конобеевский, Н. Е. Успенский, Н. Я. Селяков одними из первых применили рентгеноструктурный метод для определения геометрических размеров кристаллических решеток и их пространственной симметрии, нахождения координат атомов кристалла, обнаружения преимущественных ориентировок (текстур), возникающих при деформации твердых тел, исследования внутренних напряжений, построения диаграмм состояния. Их основополагающие работы в этой области получили дальнейшее развитие в трудах Г. В. Курдюмова, Г. С. Жданова, Н. В. Белова, В. И. Данилова, В. И. Ивероновой, А. И. Китайгородского, Б. К. Вайнштейна и др. [c.4]

    Радиометрические методы применяются для изучения структурных изменений жидкостей в поле твердой поверхности. К ним относятся прямые структурные методы дифракции рентгеновских лучей, радиационные методы и ИКС-, ЯМР-методы. С помошью этих методов была установлена особая структура ГС в лиофильных системах [35]. Пока эти методы применимы для исследования структуры простых однородных жидкостей. [c.39]

    К жидкостям неприменимы те же способы исследования, что и к газам или к твердым телам. Исследование дифракции рентгеновских лучей на жидкостях позволяет получить лишь самое общее представление о их строении. К жидкостям неприменимы законы газового состояния, поскольку объем жидкости лишь незначительно изменяется в зависимости от давления и температуры. Теоретическое описание жидкого состояния еще далеко от своего завершения, однако мы можем рассматривать жидкости как промежу- [c.187]

    Существует предположение, что механизм ферментативной реакции, включающий образование кабоний-иона, действует в случае лизоци-ма — фермента, основная роль которого состоит в атаке и расщеплении полисахаридных цепей пептидогликанового слоя клеточных стенок бактерий [10]. Лизоцим содержится в качестве защитного агента в слёзной жидкости, в других выделениях организма и в очень больших количествах в яичном белке. Лизоцим из яичного белка был первым ферментом, у которого методом дифракции рентгеновских лучей была определена полная трехмерная структура [И]. [c.98]

    В последнее время структурные изменения граничных слоев жидкостей были обнаружены Мециком и его сотрудниками [33] в слоях воды и других жидкостей между листочками слюды прямыми структурными методами методом дифракции рентгеновских лучей и с помощью инфракрасных спектров поглощения. Оба метода доказывают большую степень упорядочения тонких прослоек по сравнению с объемной жидкостью. Различие возрастает по мере утоньшения жидких прослоек и весьма отчетливо выражено при толщинах меньших 0,1 мк. Меньшая свобода вращения молекул воды в тонких прослойках подтверждается резким уменьшением диэлектрической проницаемости. [c.37]

    В данной главе приведены сведения по технике измерения дифракции рентгеновских лучей и рассеяния нейтронов, а также обобщены типичные результаты применения этих методов для исследования структуры и динамики поведения воды и ионных растворов. Такие взаимодополняющие измерения дают прямую информацию на молекулярном уровне для проверки существующих теорий или развития и усовершенствования полуэмнирических моделей жидкостей. Имеются данные, указывающие на то, что структура воды оказывает значительное влияние на гидратацию ионов и структуру растворов. Однако все еще нет достаточно общих моделей, описывающих как структуру воды и водных растворов, так и соответствующие индивидуальные и групповые движения молекул. Тем не менее в настоящее время данные дифракции рентгеновских лучей и нейтронной спектроскопии вместе с данными, полученными другими методами, могут дать много необходимых (и, возможно, достаточных) ограничений, налагаемых на количественные модели. В периоды времени, малые по сравнению с временем релаксации, вода ведет себя как "горячее", или высоковозбужденное, "квазитвердое" тело с дефектами в водородных связях и квазитетраэдрическим ближним порядком. [c.298]

    В настоящее время исключительно быстрыми темпами развивается изучение структур макромолекул фибриллярных и глобулярных белков, синтетических волокон, каучука, кристаллических вирусов, витаминов и т. д. Важную роль при этом играют методы дифракции рентгеновских лучей. Способность к образованию соединений включения многих из этих соединений только предполагается, и поэтому еще преждевременно обсуждать их подробно. По некоторым соединениям имеется значительное количество сведений, однако окончательное представление о их структуре в большинстве случаев отсутствует. Наличие таких внутримолекулярных изгибов, как в иолипептид-ных цепях, таких скрученных в а-спираль структур, как в а-кератинах, а также разнообразные формы гемоглобина, в которых обнаружены кристаллы чередующихся слоев белка и кристаллизационной жидкости, — все указывает на возможность образования соединений включения. [c.36]

    НИИ о молекулах как о жестких диполях. Объяснил аномально высокую электрочувствптельность некоторых молекул под действием электрического поля наличием постоянного электрического момента. Исследовал (с 1912) дипольные моменты молекул в растворах полярных и неполярных растворителей создал теорию дипольных моментов. Именем Дебая названа единица измерения дипольных моментов. Предложил (1916) метод наблюдения дифракции рентгеновских лучей в кристаллических порошках и жидкостях, нашедший практическое применение в исследовании структуры молекул. Совместно с А. И. В. Зоммерфельдом установил (1916), что для характеристики движения электрона в атоме при действии магнитного поля требуется третье ( внутреннее ) квантовое число. Совместно с Э. А. А. Й. Хюккелем разработал (1923) теорию сильных электролитов (теория Дебая — Хюккеля), Открыл (1932) дифракцию света на ультразвуке и применил ее к измерению длины акустических волн. Занимался исследованием структуры полимеров. [c.165]

    Моляльный объем. Моляльный объем определялся по принципу Архимеда при помощи пикнометра или суспендированием образцов в жидкостях с той же плотностью. В современных более точных исследованиях используется дифракция рентгеновских лучей и плотность рассчитывается по данным о размерах элементарной ячейки. Рентгеновский метод имеет то преимущество, что в нем исключаются эффекты пустот и включений. Еще более интересными с точки зрения термодинамики являются исследования, в которых плотность дается в большом интервале как функция температуры. Примером может служить работа Билтца [69], который, используя пикнометрию, при обычных температурах применял в качестве среды жидкости, а при низких температурах порядка 70° К — газообразный водород. [c.53]

    Практически все части электромагнитного спектра — от рентгеновских лучей до радиоволн — находят применение при изучении органических молекул. Использование дифракции рентгеновских лучей для определения структуры молекул в кристаллах имеет особую ценность для органической химии, но, к сожалению, этот метод в настоящее время недоступен для повседневного использования. Даже с помощью быстродействующих элек-тронно-счетных машин расшифровка сложных структур обычно требует от одного до двух лет работы. Дифракция электронов и нейтронов может применяться Б особых случаях, в частности если исследование с помощью рентгеновских лучей либо затруднительно (когда соединение представляет собой в обычных условиях газ или жидкость), либо не дает достаточной точности (для атомов, подобных водороду, с очень малой способностью к рассеянию). Хотя, как уже говорилось, дифракционные методы позволяют полностью установить структуру органических молекул, невозможность использования в повседневной работе препятствует их широкому внедрению в практику органической химии. [c.34]

    Исходя из структуры льда и илотности воды, Бернал и Фаулер предположили, что жидкая вода имеет более открытую структуру, чем плотно упакованные простые жидкости, такие, как аргон и пеон. Действительно, они нашли, что расчетная картина дифракции рентгеновских лучей для неупорядоченного, плотно упакованного расноложения молекул очень отлтшается от наблюдаемой дифракционной картины воды. Расчетные кар- [c.160]

    Комплекс монтмориллонита с этиленгликолем особенно характерен тем, что на отдельных слоях глинистого минерала образуются двойные слои молекул гликоля периодичность адоль оси с, равна 17 А. Каолинит, диккит и наврит ие вступают в реакцию с органическими жидкостями, которые могли бы быть прослежены с помощью дифракции рентгеновских лучей. Кристаллизация не меняется, хотя некоторое влияние на свойства пластичности указывает на поверхностные эффекты адсорбции (см. А. Ill, 245). [c.336]


Смотреть страницы где упоминается термин Дифракция рентгеновских луче жидкостей: [c.400]    [c.302]    [c.400]    [c.140]    [c.585]    [c.383]    [c.12]    [c.383]    [c.34]    [c.44]    [c.66]    [c.76]    [c.91]    [c.65]   
Свойства и химическое строение полимеров (1976) -- [ c.302 ]




ПОИСК





Смотрите так же термины и статьи:

Дифракция

Дифракция рентгеновских лучей

Лучи рентгеновские

Рентгеновская дифракция

лучами рентгеновскими лучами



© 2025 chem21.info Реклама на сайте