Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь как катализатор свойства

    Реакции глубокого окисления органических веществ катализируются переходными металлами и их окислами. Наиболее активны металлы платиновой группы и окислы железа, меди, хрома и других металлов. Отличительной особенностью процессов термокаталитической очистки яв ляется отсутствие системности в свойствах катализаторов и окисляемых веществ, поэтому можно рассматривать лишь некоторые их харак-те]шые тенденции. В частности, к наиболее трудно окисляемым органическим примесям относятся предельные углеводороды, при этом увеличение молекулярной массы этих веществ позволяет проводить процесс окисления при более низких температурах так, скорость окисления бутана на оксидных катализаторах в 10 раз выше, чем скорость окисления метана [11]. Значительно легче окисляются непредельные и ароматические углеводороды, например в присутствии двуокиси марганца пропилен при 300 °С окисляется в 10 раз, а пропан - почти в 10 раз медленнее, чем ацетилен [12]. При окислении кислородсодержащих органических веществ легче других соединений окисляются спирты, затем следуют альдегиды, кетоны, эфиры, кислоты [13-16]. [c.10]


    Среди комплексных соединений, также применяемых в качестве катализаторов, лишь те парамагнитны, которые содержат атомы с неполностью занятыми подгруппами (п = Зд, 4д, или 63 соответственно). Из сравнения [266] магнитных свойств комплексных соединений хрома, железа, кобальта, никеля и меди со свойствами их ионов видно, что аммиачные комплексы хрома, никеля и меди почти так же сильно магнитны, как ионы Сг , N1 и Си , между тем как аммиачные комплексы кобальта и цианид железа не магнитны. Они имеют магнетизм часто типа насыщенных соединений ванадия, хрома, марганца и ниобия. [c.81]

    Трименяемые в производстве ацетилен, ксилол и образующиеся в процессе реакции ацетальдегид, моно- и дивинилацетилен характеризуются опасными свойствами. Дивинилацетилен и его растворы окисляются с образованием легко взрывающихся пере-кисных соединений. Поскольку катализатор димеризации содержит медь, возможно образование внутри системы нестойких, разлагающихся со взрывом ацетиленидов меди. [c.62]

    Практически все известные для этиленовых соединений реакции электрофильного присоединения можно провести и с ацетиленовыми углеводородами и их производными. Однако вследствие большей электроотрицательности 5 г7-гибридных атомов углерода ацетилена я-электроны тройной связи более жестко связаны с ядрами, чем в этилене. На это, в частности, указывают значения потенциалов ионизации двойной (10,50 эВ) и тройной (11,40 эВ) связей. Электро-нодонорные свойства тройной связи ниже, чем у двойной, поэтому ацетиленовые соединения вступают в реакции с электрофилами примерно в 10 раз труднее, чем близкие нм по строению этиленовые. Для ускорения этих реакций рекомендуется применение катализаторов. Наиболее часто используются апротонные кислоты (галоге-ниды алюминия, бора, меди н ртути)  [c.118]

    Следует иметь в виду, что по мере углубления отбора солярового дестиллата при вакуумной перегонке мазута коксуемость дестиллата увеличивается кроме того, в нем повьппается концентрация соединений, понижающих активность катализатора (соединения железа, никеля, ванадия и меди, содержащиеся- в незначительных количествах в нефтях и в выделяемых из них соляровых дестиллатах). Загрязняя катализатор, эти металлы оказывают неблагоприятное влияние на его свойства. С увеличением загрязнения катализатора примесями уменьшается выход бензина и повышаются выход кокса и количество водорода в газах крекинга. [c.28]


    Испытания трансформаторных масел, помимо побочных показателей (температура вспышки и застывания, вязкость, диэлектрические свойства [112] и т. д.), включают в себя ускоренную пробу на окисление с целью определить вероятный срок эксплуатации масла. Для проведения этой пробы был предложен целый ряд методов [113—115]. Почти все они предусматривают нагревание масла в воздухе или кислороде при температуре около 120° обычно в присутствии меди в качестве катализатора окисления. При этом наблюдается изменение цвета, поверхностного натяжения [116, 117], кислотности, коэффициента мош,ности, образование осадка и воды [118—123]. [c.567]

Таблица 2.10. Влияние содержания меди и алюминия на свойства сплавных медно-алюминиевых катализаторов Таблица 2.10. <a href="/info/1290393">Влияние содержания меди</a> и алюминия на свойства <a href="/info/1469307">сплавных медно</a>-алюминиевых катализаторов
    Поскольку концентрация активного комплекса составляет лишь малую долю от концентрации исходных веществ, даже ничтожное количество катализатора часто меняет кинетические свойства системы. Например, для заметного изменения скорости окисления сернистокислого натрия в водном растворе достаточно Ю- г-экв катализатора (сернокислой меди) на 1 л раствора. [c.272]

    По окончании пробега низкотемпературный катализатор конверсии СО должен быть выгружен из конвертора и может подвергаться воздействию воздуха. Окисление меди кислородом является экзотермической реакцией, при которой тепла выделяется больше, чем во время восстановления катализатора. Поскольку легко перегреть катализатор, который обладает пирофорными свойствами, то пассивирующее окисление его должно контролироваться одним из способов, описанных в гл. 9. [c.139]

    Хромит меди часто используют в качестве катализатора гидрирования и в паровой, и в жидкой фазах. Он может быть получен как из шестивалентного, так и из трехвалентного хрома, что дает катализаторы с различными свойствами. Хромиты обычно применяют для гидрирования сложных эфиров, поскольку при этом процесс весьма селективен и не осложнен гидрированием сложных эфиров в углеводороды. Эффективность хромитов при гидрировании ненасыщенных сложных эфиров (эфиров олеиновой кислоты) в ненасыщенные спирты связана с сохранением имевшихся в молекуле эфира двойных связей. [c.109]

    Эксперименты, проведенные нами на катализаторах, содержащих менее 0,01—0,02 вес.% металлов, дали интересные результаты. Металлы, обладающие сильными дегидрирующими свойствами, например никель, кобальт, медь, вызывают резкое уменьшение активности катализатора. Так, при содержании на катализаторе [c.141]

    Если первые работы в этой области были посвящены исследованию только каталитической активности, то в последние годы наряду с этим проводится систематическое исследование физико-химических свойств медных катализаторов на носителях [46]. Рентгенографические исследования показали, что в восстановленных при 350°С катализаторах с высоким содержанием меди (15% и выше) часть металла образует самостоятельную фазу. [c.46]

    Существуют факты, которые указывают на важную роль свободных и слабо связанных электронов катализатора в каталитической реакции. К их числу можно отнести высокие каталитические свойства переходных металлов, обладающих незавершённой -оболочкой и возможностью перехода электронов в другую электронную оболочку каталитическую активность полупроводников, электроны которых могут осуществлять переходы между уровнями заполненной и свободной зоны и уровнями примесей наблюдающийся в некоторых случаях параллелизм между каталитическими свойствами и такими свойствами веществ, как электрическая проводимость и работа выхода электрона и т. п. Влияние работы выхода электрона на каталитическую активность иллюстрирует разложение пероксида водорода на меди или никеле. Одна из стадий этой реакции состоит в диссоциации молекулы пероксида водорода  [c.360]

    Такое специфическое действие катализаторов обусловлено особенностями их физико-химических свойств и прежде всего способностью соединяться с тем или иным веществом, участвующим в данной реакции. Металлы, в частности медь и никель, имеют большое сродство к водороду, который адсорбируется иа их поверхности. Поэтому подобные металлы являются специфическими катализаторами в реакциях, в которых продуктом является водород, т. е. в реакциях дегидрирования. Глинозем же после соответствующей обработки сильно адсорбирует воду и является хорошим катализатором для реакций дегидратации. [c.275]

    Между элементами вертикальных столбцов проявляются отдельные черты и более близкого сходства. Например, для всех членов ряда Со, НЬ, 1г (в противоположность остальным элементам группы) характерно образование аммиакатов типа [Э(ЫНз)б]Хз. Члены ряда Ре, Ни, Оз являются особенно активными катализаторами при синтезе аммиака из элементов, а N1, Рс1 и Р1 — при реакциях присоединения водорода к органическим соединениям. Для Ре, Ки и Оз кислородные соединения характернее сернистых, тогда как в ряду N1, Рё, Р1 наблюдается обратное. В этом, равно как и в некоторых других отношениях. Ре, Ки и Оз похожи на Мп, Тс и Ке, а N1, Р(1 и Р1—на Си, Ад и Аи. По своим химическим свойствам элементы триад являются таким образом переходными между примыкающими к ним элементами подгруппы марганца, с одной стороны, и подгруппы меди — с другой.  [c.453]


    Кобальт обладает более сильными, чем медь, каталитическими свойствами при реакциях гидрироваиия, а в некоторых случаях даже превосходит иикель [328, 329] Кобальтовые катализаторы получают так же, как и никелевые [238—241] Их можно активировать окисью кальция и карбонатом натрия [78] В ряде работ [242,243] указывалось на хорошие каталитические свойства карбонила кобальта Со2(СО)в Проведение гидрирования в присутствии окиси уперода или введение ее в смесь через некоторое время после начала гидрирования предотвращает быстрое падение активности кобальтовых катализаторов [244]. [c.321]

    Далее, должны быть изучены вещества, обычно не рассматривающиеся как хорошие катализаторы. Свойства серы и других ядов, приводящие к дезактивации и изменению селективности, могут оказать благоприятное воздействие на каталитические характеристики таких веществ (см. разд. 6.2). Например, считают, что платина так сильно связывает СО, что это приводит к снижению ее активности [21], но благодаря высокой селективности платины она проявляет хорошую активность в процессе гидрогенизации. Отравление серой может, конечно, влиять на оба эти свойства, но результирующая активность и распределение продуктов могут быть оценены только посредством эксперимента. Платина значительно менее чувствительна к объемной сульфидации, чем Ре, Со или N1 [22]. Уровень содержания НгЗ в водороде, необходимый для образования сульфида в объеме, в 20 раз выше, чем уровень, необходимый для образования Ре5 при температуре 700 К. Существуют аналогичные отличия и в стабильности сульфидов на поверхности (см. разд. 6.2). Экстремальным примером является медь, для которой уровень концентрации НгЗ, необходимый для образования сульфида в объеме, был вычислен равным 73%, что в тысячу раз выше уровня, который требуется в случае железа. Применение [c.266]

    Применение медного скелетного катализатора. Свойства активной меди, так же как и активного железа, изучены далеко не полностью. На основании работы Фокуно скелетный медный катализатор проявляет те же свойства, что и восстановленная медь, которая в газовой фазе гидрирует только концевую двойную связь. Скелетный медный катализатор при восстановлении карбонильных соединений проявляет большую активность, чем весстановленная медь. В присутствии скелетного медного катализатора альдегиды восстанавливаются в спирты с выходом 70-98% при 125—150°. Кетоны могут быть восстановлены с такими же выходами при 95 — 125° [c.172]

    Г, Д. Любарский (Москва, СССР). В весьма интересной работе, изложенной в докладе 29, показано, как изменяются активность и селективность катализаторов гидрирования метилацетилена при переходе от одних металлов к другим и, в частности, при варьировании состава сплавов никеля с медью. Каталитические свойства системы никель — медь изучались многими исследователями для ряда реакций, и были получены противоречивые данные. В нашей работе ири изучении реакции гидрирования бензола на таких сплавах было показано, что прибавление меди к никелю снижает его активность в соответствии с изменением числа свободных -орбиталей и что кобальт оказывается намного активнее ыикеля при полном отсутствии каталитической активности меди. Однако эти выводы нельзя делать для всех реакций. Так, для реакции гидрирования ацетона на тех же металлах и сплавах в результате подробного изучения кинетики процесса выяснилось, что скорость реакции на кобальте несколько ниже, чем на никеле, а на меди еще ниже, что связано, по-видимому, с )aзличиями формы и скорости хемосорбции водорода на этих металлах. В частности,известно, что адсорбция водорода на никеле происходит в атомарной форме, а на меди практически наблюдается только ири высоких температурах и в молекулярной форме. [c.337]

    Каталитическое окисление нефтяных остатков. Имеется множество попыток ускорить процесс окисления сырья, повысить качество или придать определенные свойства окисленному битуму с помощью различных катализаторов и инициаторов. В качестве катализаторов окислительногвосстановительных реакций предложено применять соли соляной кислоты и металлов переменной валентности (железа, меди, олова, титана и др.). В качестве катализаторов дегидратации, алкилирования и крекинга (перенос протонов) предложены хлориды алюминия, железа, олова, пятиокись фосфора в качестве инициаторов окисления — перекиси. Большинство из этих катализаторов инициирует реакции уплотнения молекул сырья (масел и смол) в асфальтены, не обогащая битумы кислородом. Возможности ускорения процесса окисления сырья и улучшения свойств битума (в основном в направлении повышения пенетрации при данной температуре размягчения), приводимые в многочисленной патентной литературе, обобщены в [63], но, поскольку авторы патентов делают свои предложения, не раскрывая химизма процесса, их выводы в настоящей монографии не рассматриваются. Исследования А. Хойберга [64, 65] [c.141]

    Интенсивность образования "дегидрогенизационного" кокса определяется содержанием и типом отлагающегося на катализаторе метахла сырья. Наибольший выход этого типа кокса обеспечивают коба ьт, никель, медь и в меньшей степени ванадий, молибден, хром и железо. Интенсивность образования кокса, помимо свойств ка — тали штора и химического состава сырья, определяется также кинетическими параметрами технологического процесса. [c.123]

    Оонозными причинами ненормального старения являются 1) дей твие на катализатор некоторых газов при высокой темпера-туре — аммиака, сернистого газа и особенно сероводорода 2) влияние на свойства катализатора ряда сернистых соединений, особенно тех, из которых в условиях каталитического крекинга образуются сероводород и сернистый газ 3) накопление на катализаторе окислов металлов (железа, меди, никеля, ванадия, натрия и др.), содержащихся в виде примесей в сырье 4) действие на катализатор высокой температуры и водяного пара при высокой температуре. [c.52]

    Электроизоляционные >масла выполняют роль диэлектрика и теплоотводящей среды. К чжлу их относятся трансформаторные, конденсаторные и кабельные масла. Помимо высоких диэлектрических свойств электроизоляцишшые масла дофясны обладать высокой химической стабильностью (Ъри конт те с медью, свинцом и другими металлами, являющимися катализаторами окисления), низкой температурой застывания, хорошими противокоррозионными свойствами при минимальном значении тангенса угла диэлектрических потерь. Эти масла не должны содержать смолистых и асфальтообразных веществ, а кабельные, помимо того, и ароматических [c.140]

    Растворы Rh ia активируют изомеризацию бутена-1, но при этом наблюдается длительный (30—60 мин) индукционный период, в то время как при использовании комплексов Rh(I) реакция начинается сразу. Кроме того, сравнение каталитической активности комплексов Rh(I) и Rh(ni) показывает, что константа скорости изомеризации в первом случае почти на порядок выше. Известно также, что комплексы НЬ(П1) требуется предварительно восстанавливать водородом можно еще отметить, что каталитические свойства Pd(ll) связывают с его переходом в состояние с мeпЬiUeй степенью окисления [27]. Это предположение косвенно подтверждается тем, что соединения, окисляющие палладий (бензохинон, хлорная медь, бихромат калия, перекись водорода, перекиси олефинов), деза ктивируют катализатор.- [c.114]

    Селективностью катализатора называют величину, которая показывает, в какой степени он ускоряет реакцию образования одного или нескольких желательных промежуточных продуктов в расчете на прореагировавшее сырье. Селективность зависит не только от пртроды катализатора, но и от параметров процесса (Р, т, Уж. глубины п]ревра-щения), поэтому ее следует относить к определенным условиям проведения реакции. Селективность определяется в первую о середь свойствами катализатора, но она зависит от термодинамичс ского равновесия. В качестве примера селективности, определяемой свойствами катализатора, часто приводят реакцию разложения этанола. Над медью протекает реакция дегидрирования, а над оксидом алюминия -реакция дегидратации. В этом случае селективность объясняется тем, что медь поглощает водород, а оксид алюминия хемосорбирует воду. [c.90]

    Катализаторы для таких окислительно-восстановительных реакций, как реакция (1), кроме высокой активности должны обладать селективными свойствами, характеризующимися умеренной гидрирующей функцией. Это необходимо, чтобы достичь соответствующих скоростей реакции без заметного образования метана. Следовательно, соответствующие катализаторы можно искать среди металлов группы 1Б, окислов 8 группы и сульфидов 8 группы (см. табл. 2). Следующее требование, заключающееся в том, что катализатор должен быть стабильным в среде реакционного газа, ограничивает выбор металлической медью, РбзО и РеЗ. Кроме того, подходящими свойствами, но в ограниченной степени, обладает сульфидированная форма молиб-дата кобальта. [c.118]

    Величина IgPpfi меняется в пределах 2,28—2,43. В эту подгруппу сульфидов включаются MnS, FeS, oS, NiS, ZnS. К ним относится и сульфид ванадила VOS. Все сульфиды подгруппы сернистого аммония окрашены, кроме сульфида цинка (белый). Так как катион хрома (II) обладает сильным восстановительным действием и неустойчив (хотя и образуют черный очень малорастворимый сульфид rS), то здесь рассматриваются катионы хрома (III), хромат- и бихромат-ионы кроме марганца (II), рассматриваются также манганат- и перманганат-ионы. Аналитические свойства хрома (III) объясняются структурой электронейтрального атома (ЗiiЧs ). То же самое наблюдается у меди (И) (3d "4si). Трисульфид хрома черно-коричневый, подвергается гидролизу вследствие меньшей растворимости гидроокиси хрома (III). В табл. 38 сопоставлены основные характеристики катионов этой подгруппы. Все катионы данной подгруппы легко переходят из одной степени окисления в другую, используются при редоксметодах анализа и как катализаторы в кинетических методах. В химико-аналитических реакциях этих ионов сказывается сходство их электронной структуры по горизонтальному направлению. Катионы ярко окрашены и образуют разнообразные комплексные соединения. 8-оксихинолин, который называют органическим сероводородом , дает характерные, ярко окрашенные внутрикомплексные соединения с этими катионами, начиная от титана и до цинка (табл. 38). [c.205]

    С появлением парового риформинга, осуществляемого на чувствительных к отравлению никелевых катализаторах, производство синтез-газа, почти свободного от ядов, становится все более экономически привлекательным. В результате этого увеличивается число каталитических веществ, пригодных для использования в производстве синтез-газа. В частности, появляется возможность использования потенциальных достоинств меди. Доводы в пользу меди, приведенные в гл. 1, делают понятным выбор ее в качестве катализатора реакции конверсии СО считается, что она обладает активностью и селективностью при значительно более низких температурах, чем обычные катализаторы на основе Рёд04. В литературе описана длительная история изучения каталитических свойств меди, но уже ранние исследователи наблюдали быстрое падение активности, обусловленное не только ее чувствительностью к ядам, но также и быстрым уменьшением поверхности. Композиции меди с окисью цинка использовались в течение многих лет в качестве катализаторов гидрирования и дегидрирования органических соединений, и эти катали- [c.132]

    С двуокись углерода с парциальным давлением 3 ат будет реагировать с окисью цинка и снижать прочность катализатора. При более высоких температурах можно без риска работать с более высоким парциальным давлением СО3. Действие Н О и СОа на окись цинка сходно с термическим спеканием, но происходит при более низких температурах (гл. 1). Структурообразующие свойства окиси цинка будут ослаблены, если условия реакции приблизятся к условиям возможного образования карбоната цинка. Используемая в катализаторе форма окиси алюминия не должна реагировать с рабочим-газом, но должна иметь хорошие стабилизирующие свойства. Инертность А12О3 не создает проблем. В катализаторе Ай-Си-Ай 52-1, в котором окись цинка и окись алюминия являются субмикроскопи-ческими структурными промоторами, окись алюминия не только уменьшает термическое спекание меди, но также затрудняет реакцию спекания окиси цинка и увеличивает стабильность катализатора, в условиях реакции. [c.139]

    Высокоактивные низкотемпературные катализаторы позволяют вести процесс при 180-250°С. Высокая активность обусловлена налзгж-ем в них металлической меди, 1фоме того, в них входят окислы цинка, алюминия и иногда хрома, Содеряание окиси меди (в невосстановленном катализаторе) колеблется от 20 до 50I . Окислы щшка и алюминия стабилизируют свойства активной меди, т.е, препятствуют зе спеканию при ебочих температурах. [c.195]

    Исследова1а1я свойств катализатора НТК-4 показало, что его активность пропорциональна величине поверхности, содержащей медь. [c.195]

    Катализатор содержал 12% меди и 3% висмута, нанесенных в виде окислов на гранулированный силикагель при взаимодействии с ацетиленом эти окислы превращались в ацетилениды. Считают, что активными свойствами обладает только комплекс ацетиленида меди с ацетиленом u j jHj, который устойчив лишь в атмосфере ацетилена. Висмут добавляют для того, чтобы подавить реакцию образования купрена. Катализатор служил 2—4 месяца, после чего отложение купрена на его поверхности приводило к росту сопротивления движению материальных потоков и к снижению активности катализатора. [c.286]

    При дегидрировании кониферилового спирта в водном растворе действием кислорода воздуха в присутствии фенолдегидрогеназ или неорганических катализаторов (например, солей меди) образуется аморфная масса, по всем реакциям качественно и количественно идентичная хвойному лигнину. Совпадение оптических свойств обоих веществ очень хорошее, различия между УФ-спектрами в нейтральной и щелочной средах одинаковы. Мол, вес получаемой массы имеет порядок 10 ООО элементарный состав отвечает лигнину. По степени окис- [c.548]

    Для катализаторов характерна специфичность, т. е. способность воздействовать лишь на определенные реакции. Например, одни и те же исходные вещества могут превратиться в различные продукты в зависимости от свойств примененного катализатора. Так, металлы, в частности медь и никель, имеют большое сродство к водороду, который активированно адсорбируется на их поверхности. Такие металлы являются специфическими катализаторами для реакций гидрогенизации. При пропускании паров этилового спирта над медью или никелем при 300—400° С идет реакция С2Н5ОН СН3СНО + Н2. Глинозем при соответствующей обработке сильно адсорбирует воду н является хорошим катализатором для реакций дегидратации. В присутствии глинозема реакция термического распада этилового спирта идет по другому пути СгНаОН —> С2Н4 + Н2О. [c.406]

    Проблема детального определения того, какие свойства ацетата меди(1) делают его катализатором реакции гидрирования, до сих нор остается нерешенной. Лимнтнру]ощей стадиен реакции гидрирования является активация водорода. Такая активация возможна в дайной системе, ио-впдимому во-первых, потому что ацетат меди(1) находится в растворе частично в виде димера, а во-вторых, потому что комплекс дпмера с растворителем обладает электронной и геометрической структурой, допус]4ающей одновременное образование двух прочных связей между металлом и водо- [c.191]

    Однако двухвалентная медь (в виде ацетата), двухвалентная платина (в виде зтилендихлорида), а также кобальт с нулевой валентностью (в виде карбонила), несмотря на то, что они не обладают подобным строением внешней электронной оболочки, также являются эффективными гомогенными катализаторами активации водорода. Поэтому в настоящее время не представляется возможным ни дать простое обобщение электронных свойств [c.215]

    Основная часть никеля (85—87%) расходуется для- производства сплавов с железом, хромом, медью и другими металлами. Эти сплавы отличаются высокими механическими, антикоррозионными, магнитными и электрическими свойствами. Сплавы никеля с алюминием (а также с магнием и кремнием) используются в качестве исходного вещества для получения никеля Ренея — никелевого катализатора скелетного типа, образующегося при действии щелочи на эти сплавы. [c.286]

    Гетерогенная гидратация в паровой фазе может быть осуществлена непрерывным способом. Она протекает в присутствии различных катализаторов, обладающих, как правило, кислотными свойствами. Такими катализаторами являются активированная окись алюминия с добавками СиО, МпО, Н3РО4, окислы вольфрама и окись цинка, нанесенные на силикагель, фосфаты меди, цинка, кадмия. [c.157]

    Постепенное ухудшение действия катализатора наблюдается, например, при использовании гопкалита (смеси окислов, главным образом марганца и меди). Этот катализатор ускоряет реакцию горения G0 (используется для поглощения СО). При этом в смеси окислов меди меняется отношение между СиО и ujO и катализатор изменяет свои состав и свойства. [c.408]

    Гетерогенные катализаторы сравнительно редко применяются в виде индивидуальных вешеств и часто содержат различные добавки, так называемые модификаторы. Цели их введения очень разнообразны повышение активности катализатора (промоторы), избирательности и стабильности работы, улучшение механических или структурных свойств. Фазовые и структурные модификаторы стабилизируют активную фазу твердого катализатора или пористую структуру его поверхности. Так, в медь-хромовых катализаторах идрированный окспд хрома препятствует восстановлению оксида меди (И) с превращением его в неактивную форму. Добавление уже 1 % А1гОз к железному катализатору увеличивает его площадь поверхности, препятствуя спеканию и закрытию пор и т. п. Некоторые модификаторы существенно повышают стабильность работы катализатора или сильно изменяют характер его каталитической ак- [c.441]

    При температуре около 1000° и выше сероводород легко окисляется кислородом ИЛИ воздухом в серу без катализатора. Однако-при температуре ниже 700° эта реакция идет с заметной скоростью только на активной поверхности таких катализаторов, как силикагель и глинозем. Лучшим катализатором является боксит стекло, керамика и сульфиды также обладают некоторыми каталитическими свойствами. Металлическое железо замедляет реакцию, а окись железа и медь почти останавливают ее. Выбор катализатора определяется его механической и термической устойчивостью. Срок службы катализатора на старых установках, работающих при более высокиз температурах, обычно был продолжительнее, катализатор после 8—20 лет работы сохранял свою активность на некоторых же новых установках работающих при более низких температурах, срок службы катализаторь всего лишь 6 месяцев. [c.529]

    Декарбоксилирование.Способом получения углеводородов деградацией является метод декарбоксилирования (отщепление двуокиси углерода) карбоновых кислот при нагревании их натриевых солей с известью. Как указано выше, свободный от тиофена бензол был впервые получен именно этим методом (см. 17.1). Удобным способом декарбоксилирования является нагревание вещества в растворе хинолина в присутствии порошкообразной меди как катализатора (Дж. Джонсон, 1930). Этот метод на.ходит применение в синтезе фурана, гетероциклического кислородсодержащего соединения, в некоторой степени обладающего аро1 атическими свойствами. Так, фурфурол, получаемый в технике переработкой кукурузных кочерыжек (см. том I 12.15), превращают по реакции Канниццаро в фурфуриловый спирт и фуранкарбоновую-2 кислоту, которую затем декарбоксилируют  [c.186]


Смотреть страницы где упоминается термин Медь как катализатор свойства: [c.441]    [c.251]    [c.231]    [c.97]    [c.88]    [c.174]    [c.279]    [c.38]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.482 ]




ПОИСК





Смотрите так же термины и статьи:

Катализатор медь

Медь, свойства



© 2025 chem21.info Реклама на сайте