Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий на анионитах

    Перхлорат ванадия. Данный перхлорат выделить не удалось. Растворы перхлоратов трех- и четырехвалентного ванадия были приготовлены Фурманом и Гарнером они же изучали спектр поглощения. Кинг и Гарнер исследовали кинетику окисления ионов двух- и трехвалентного ванадия анионом перхлората. [c.62]

    Отделение молибдена от ванадия анионным обменом в виде комплекса с тиогликолевой кислотой фотометрическое определение ванадия с помощью тиогликолевой кислоты [1407], [c.284]


    Определению мешают по механизму (б) — золото (1П) Ф = 1,1), рений (VII) (3000) и ртуть по механизму (в ) — серебро, хром (VI), вольфрам, ванадий, анион NO3. Обработка растворов металлической медью (цементация), предусмотренная прописью определения, устраняет мешающее влияние до 100—200 жкг золота и до 10—20 жг ртути и серебра. Присутствие в растворе 1 г железа, меди или молибдена не влияет на результаты определения. [c.206]

    Работа 5. Концентрирование ванадия(У) на анионите [c.317]

    Десорбция ванадия (V) из анионита. Надев защитные очки, наливают в пробирку 5 мл 2 М раствора гидроксида натрия. Тщательно перемещивают содержимое пробирки стеклянной палочкой, дают смоле осесть и сливают раствор через беззольный фильтр (не перенося анионит на фильтр) в коническую колбу. Так обрабатывают анионит пять раз. Далее анионит три раза промывают 5 мл горячей дистиллированной воды, вливая воду через тот же фильтр в коническую колбу. К собранному в колбе раствору добавляют 25 мл серной кислоты (1 1), охлаждают колбу с раствором под струей водопроводной воды и определяют ванадий(У) титрованием солью Мора или кулонометрическим титрованием. В первом случае перед титрованием добавляют [c.319]

    Для ванадия (IV) известны как катионные, так и анионные комплексы. . [c.126]

    Ванадий, ниобий и тантал взаимодействуют также при сплавлении со щелочами в присутствии окислителей, т. е. в условиях, способствующих образованию, отвечающих их высшей степени окисления анионных оксокомплексов  [c.437]

    Нельзя считать, однако, что при уменьшении концентрации ионов водорода условия осаждения всегда улучшаются. Иногда приходится уменьшать кислотность раствора только до некоторого предела, для того чтобы не осаждались другие ионы, присутствующие в растворе. Далее, при осаждении иона элемента, гидроокись которого имеет амфотерный характер, в щелочной среде образуется анион, как, например, АЮГ, МоО . Из приведенных иа стр. 104 данных видно, что оксихинолин не осаждает алюминия и цинка в сильнощелочной среде, а молибден перестает осаждаться даже в слабощелочной среде. Аналогичная зависимость наблюдается в ряде других случаев, например при осаждении ванадия купфероном и т. д. [c.105]

    Соли ванадия находятся в растворе в виде различных комплексных ионов так, пятивалентный ванадий образует соли ванадила УО , а также соединения полииона и др. (в зависимости от кислотности и анионного состава раствора). Поэтому уравнение реакции восстановления является только приближенным  [c.392]


    Напишите уравнения реакции растворения ванадия в плавиковой кислоте с образованием аниона [c.166]

    В пробирку насыпьте небольшое количество оксида ванадия (V) (примерно 1 микрошпатель), долейте 2—3 мл насыщенного раствора оксалата аммония и раствор прокипятите. Наблюдайте растворение оксида ванадия (V) вследствие образования комплекса ванадат-ионов с оксалат-ионами состава [ 02(0204)2] ", представляющего собой анион гетерополикислоты. [c.199]

    Анионы, образуемые ванадием, хромом, германием, мышьяком, селеном, оловом (IV), теллуром, и другие относятся к 4-й аналитической группе по кислотно-щелочному методу. Вольфрамовая кислота выделяется в осадок вместе с хлоридами металлов по кислотно-щелочному методу. [c.21]

    Возникновению окрашенных соединений благоприятствует поляризующее действие катионов. Например, окись калия бесцветна, так же как окиси кальция, скандия и титана (IV), но окислы титана (III), ванадия, хрома, марганца, железа, кобальта, никеля и меди окрашены. В этом случае сказывается влияние аниона, деформирующего электронную оболочку катиона. [c.42]

    Поэтому в щелочных растворах преобладают анионы УОз, а в кислых — катионы (ванадила). [c.352]

    Оксиды тантала (+5) взаимодействуют подобным же образом, но менее энергично. Таким образом, при взаимодействии со щелочами высшие оксиды ванадия, ниобия и тантала образуют соответствующие соли — ванадаты, ниобаты и танта-латы. Характерной особенностью этих анионов является способность к образованию изополисоединений. [c.429]

    Разработаны новые окислительные системы на основе пероксида водорода и комплексов переходных металлов (ванадия, молибдена, вольфрама), активные в окислении сернистых соединений. Синтезированы новые ванадиевые анионные пероксокомплексы с различными азотсодержащими гетероциклическими лигандами (пиридин, бипиридин, пиразин др.). Изучение состава и строения полученных пероксокомплексов проводили методами элементного анализа, ИК- и ЯМР-спектроскопии, а также рентгеноструктурного анализа [c.61]

    Анионы и катионы хлор сульфат натрий кальций магний никель марганец железо алюминий ванадий сульфит Окислы натрия кальция магния железа алюминия никеля марганца ванадия кремния [c.56]

    Ванадий от алюминия предлагали отделять в виде пероксидного комплекса на анионите вофатит L-150 [1000]. [c.188]

    Наряду с образованием сульфидов для разделения ионов в количественном анализе широко применяется также осаждение различных катионов в виде малорастворимых гидроокисей. При этом для разделения иоиов используют либо амфотерность некоторых из них, либо различия в растворимости разных гидроокисей. Так, железо отделяют от ванадия, молибдена и алюминия, обрабатывая раствор избытком едкой щелочи. При этом неамфотерная гидроокись железа выпадает в осадок, тогда как остальные указанные металлы вследствие амфотерного или кислотного характера их гидроокисей остаются в растворе в виде анионов (VO.3, ЖоОТ и AIO2). [c.121]

    В обычных условиях V и особенно Nb и Та отличаются высокой химической стойкостью. Ванадий на холоду растворяется лишь в царской водке и концентрированной HF, а при нагревании — в HNO3 и концентрированной H2SO4. Ниобий и тантал растворяются лишь в плавиковой кислоте и смеси плавиковой и азотной кислот с образованием отвечающих их высшей степени окисления анионных фторокомплексов  [c.540]

    Для ванадия (V) известны лишь оксид V2O5 и фторид VFg, тогда как для ниобия (V) и тантала (V) известны и все дру гие галиды SHalg. Для Э (V), кроме того, характерны оксогалиды типа Э0На1з. Все указанные соединения типично кислотные. Некоторые отвечающие им анионные комплексы приведены ниже  [c.544]

    Еще Вертело пытался ускорить реакцию между этиленом и серной кислотой, применяя в качестве катализаторов соли ртути. Фритцше [38] считал, что этилсерная кислота сама по себе достаточно акти1 ный катализатор. Это было подтверждено в работе [39]. В дальнейшем были изучены многие катализаторы [40, 41], причем наиболее эффективными оказались соли серебра, железа, меди и окислов ванадия. Действие солей в болынинстве случаев не зависит от аниона, но поскольку мы имеем дело с серной кислотой, рекомендуе -ся употреблять сульфаты (несколько отличаются друг от друга по действию соли одно- и двухвалентной меди). Иногда специфичность действия приписывается аммиачным солям [42] и циановым комплексам металлов [43], но, по нашему мнению, главная роль во всяком молекулярном комплексе принадлежит металлу (например, железу в соли Мора и ферроциановых соединениях). Различие может заключаться лишь в неодинаковом физическом состоянии катализатора в серной кислоте и в последующем изменении состояния с превращением части молекул серной кислоты в молекулы этилсерной кислоты или с введением влаги в серную кислоту. Сравнение действия различных катализаторов может привести к одним и тем же выводам кривые относительной интенсивности действия в ряду каталитических добавок приблизительно одного порядка. Абсолютные значения каталитического действия здесь не важны, поскольку они зависят от условий эксперимента. [c.22]


    Получены многочисленные соединения У+ и сравнительно немного соединений ЫЬ+ и 73+ . Для У+ известно больше анионных соединений (содержащих УОз , У4О9, [У0р4 " и др.), чем катионных (У0+ , реже — У+ ). Соединения У+ характеризуются большой склонностью к комплексообразованию. Обращает на себя внимание обилие соединений, содержащих группу ванадила (1У) У0+ она входит в виде катиона в состав многих солей, а также содержится в ряде анионных комплексов. В водных растворах группа УО+2 гидратирована, входит в состав аквакомплекса [У0(Н20)5] +, окрашенного в синий цвет.  [c.519]

    Гидроксиды, или, точнее, оксилгидроксиды ванадия, являются слабыми кислотами, образующими соли с тремя видами анионов  [c.278]

    По химической природе пентагалиды ванадия, ниобия и тантала вляются типичными кислотообразователями. При действии воды они подвергаются гидролизу. Пентафториды склонны к образованию комплексных анионов. Кроме чисто галогенных соединений для ванадия и ниобия известны смешанные галогено-кис-лородные соединения УОГ3 и ЫЬОГз также ковалентной природы. [c.278]

    К высокоактивным комплексным катализаторам анионной полимеризации относятся также катализаторы Циглера —Натта, получаемые сочетанием металлалкилов (например, триэтилг1люминия, 1зоамилнатрия, диэтилцинка) с галогенидами титана, ванадия и [c.139]

    Соединений Э известно больше, особенно для ванадия. Последние встречаются как в виде катионных соединений У . У(Н20)ь , (V(H20)4 l2l, УО и др., так и виде анионных соединений [УРб1 , [ViSOi) ", y( N)6) ". Соединения У легко окисляются. [c.500]

    Соединения ванадия (IV) и ванадия (V) образованы ковалентными связями и в растворах образуют анионы кислот либо сложные катионы, например У0 + — оксованадий (1У)-ион, УО — ди-оксованадий(У)-ион. [c.239]

    Ангидрид ванадиевой кислоты, или оксид ванадия (V) УдСЗз. Ангидрид ванадиевой кислоты проявляет кислотные свойства. Хотя известны соединения, в которых пятивалентный ванадий связан с более электроотрицательными элементами УОС , и т. д., но наиболее важными являются те, в которых пятивалентный ванадий входит в состав сложных анионов. Ванадиевая кислота имеет более кислотный характер, чем ниобиевая и танталовая кислоты. УаОд добывают прокаливанием на воздухе ванадата аммония  [c.310]

    Оксиды и гидроксиды ряда металлов также проявляют способность к ионному обмену. Однако в этом отношении они ведут себя неодинаково. Например, кислые оксиды молибдена (VI), вольфрама (VI), урана (VI), ванадия (V) практически не обладают анионообменной способностью, а основные оксиды титана (IV), висмута (1П) обладают лишь незначительной катионообменной способностью и ведут себя как аниониты. Такие амфотерные гидроксиды, как А1(0Н)з, 5п(ОН)4, ЫЬ(ОН)в, Та(ОН)б в кислой среде поглощают анионы, а в щелочной — катионы. [c.45]

    Подобно карбонилам Сг, Мо и W, твердый при обычных условиях зеленый У(СО)б имеет структуру правильного октаэдра с атомом ванадия в центре. Для энергии связи V—СО дается значение 28 ккал/моль. Вещество это на воздухе самовоспламеняется, в вакууме около 50 °С возгоняется, а в атмосфере N2 при 70 °С разлагается. Очень сильное охлаждение вызывает, по-видимому, его димеризацию с образованием V2( O)i2. Растворы У(СО)б в органических жидкостях имеют желто-оранжевый цвет и очень неустойчивы. При действии на них иода количественно протекает реакция по схеме 2V( 0)e-f ЗЬ = 2VI3 + 12С0. С другой стороны, V( O)e легко восстанавливается до аниона [У(СО)б], для которого известны, в частности, желтые соли типа М[У(СО)б], где М = Na, К, NH4. Подкислением их может быть, по-видимому, получен нестойкий гидрокарбонил НУ(СО)б. Установлено, что он обладает отчетливо выраженными кислотными свойствами. [c.517]

    VI групп, склонен к образованию гетерополисоединений. В этих соединениях определенные сочетания ионов кислорода, заключающие ион ванадия, например V20 окружают ион-комилексообра-зователь, например ион Р +, Si +, As + так, что получаются сложные анионы. [c.210]

    Из всех перечисленных выше сульфидов наибольшее относительное содержание серы в 84. Это соединение относится к анионо-избыточ-ным фазам (иолисульфидные цепочки). Известен и полисульфид ванадия, более богатый серой,— 85. При нагревании он постепенно отщепляет серу, переходя в низшие производные  [c.308]

    Перманганатометрию чаще всего применяют для анализа солей железа (II), железа (III) (после восстановления), марганца (И), кальция (в виде оксалата), меди (I), олова (И), титана (III), ванадия (III), молибдена (Ш), хрома (III) (косвенно , анионов-восстановителей нитрита, роданида, гексацианоферроата перекиси водорода и перок-содисульфатов (косвенно). Из органических веществ чаще всего определяют щавелевую кислоту и оксалаты, косвенно гидроксиламин NH2OH. [c.400]

    Для ванадия (У) известны лишь оксид У2О5 и фторид Ур5, тогда как для ниобия (У) и тантала (У) известны и все другие галогениды ЭНаЦ. Для Э(У), кроме того, характерны оксогалогениды типа Э0На1з. Все указанные соединения типично кислотные. Некоторые отвечающие им анионные комплексы приведены ниже  [c.593]

    При нагревании и перемешивании 1 кг тонко измельченной.пятиокиси ванадия выщелачивают 0,6—0,65 кг 10—12%-ного раствора едкого натра [5]. Раствор ванадиевокислого натрия отфильтровывают от нерастворимого остатка и разбавляют водой до концентрации 0,3—0,4 г-экв л УгОз. Разбавленный раствор содержит 0,40—0,42 г-экв/л катионов щелочных (преимущественно натрия) и щелочноземельных металлов, 0,08 г-экв1л анионов сильных кислот-примесей (8042-, С1- и др.), 0,002 г-экв/л катионов тяжелых металлов-примесей (N1, Со, Мп, РЬ, Сс1 и др) и 0,001 г-экв/л катионов железа. [c.15]


Смотреть страницы где упоминается термин Ванадий на анионитах: [c.521]    [c.502]    [c.424]    [c.304]    [c.305]    [c.227]    [c.101]    [c.193]   
Ионообменные разделения в аналитической химии (1966) -- [ c.304 , c.353 ]




ПОИСК







© 2024 chem21.info Реклама на сайте