Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поры клеточной стенки

    Микрофибриллы в клеточной стенке располагаются с различной степенью упорядоченности (см. 8.6.2). В первичной стенке образуется простая многослойная сетчатая структура с предпочтительной ориентацией микрофибрилл, меняющейся по толщине стенки. Формирование такой структуры осуществляется на стадии увеличения поверхности клетки и может происходить в результате растяжения клетки. Микрофибриллы откладываются на растущую поверхность стенки перпендикулярно оси растяжения, но по мере роста клетки их ориентация меняется. Степень изменения ориентации будет наибольшей у микрофибрилл наружной части растущей поверхности, где они будут иметь предпочтительную ориентацию вдоль оси растяжения, и уменьшается по мере перехода к внутренней части первичной стенки, где микрофибриллы преимущественно ориентированы в поперечном направлении. Кроме этого, в первичной стенке у многих клеток имеются продольные тяжи из параллельно ориентированных микрофибрилл. Вторичная стенка отличается более высоким содержанием микрофибрилл, которые располагаются в отдельных слоях параллельно друг другу под определенным углом к оси клетки. Таким образом, биосинтез целлюлозы должен обеспечить получение линейного гомополисахарида со сравнительно большой степенью полимеризации, образование целлюлозных микрофибрилл и их ориентацию в клеточной стенке. Это весьма сложный процесс, многие детали которого до сих пор неясны. [c.335]


    Клетки древесины сообщаются между собой через поры. Поры -это неутолщенные участки клеточной стенки. Пора не является свободным отверстием, так как в ней имеется тонкая мембрана (первичная стенка и межклеточное вещество), пронизанная мельчайшими отверстиями. В живых клетках через эти отверстия проходят тонкие нити цитоплазмы, соединяющие содержимое живых клеток в одно целое. Поре в оболочке одной клетки соответствует пора соседней клетки, то есть образуется пара пор (рис.8.6). Различают простые, окаймленные и полуокаймленные поры (пары пор). Простые поры (см. рис. 8.6, а) образуются в стенках двух смежных паренхимных клеток, а окаймленные поры (см. рис. 8.6, б) - в стенках двух смежных трахеид, располагаясь преимущественно на радиальных стенках у концов трахеид. Поздние трахеиды по сравнению с ранними имеют меньшее число пор меньших размеров (щелевидные поры). У окаймленной поры мембрана имеет в центре утолщение - торус, играющий роль клапана, который может перекрывать пору. Структура торуса отличается от структуры мембраны. Окаймление образуется нависающим выступом вторичной стенки. Оно может быть выражено четко или слабо заметно. Трахеиды с паренхимными клетками сердцевинных лучей сообщаются через полуокаймленные поры (см.рис. 8.б,в) в так называемых полях перекреста. Форма, размер и число пор в поле перекреста служат диагностическими признаками при определении хвойных древесных пород. [c.201]

    Функции клеточной стенки прокариот. Клеточная стенка прокариот выполняет разнообразные функции механически заш иш ает клетку от воздействий окружаюш,ей среды, обеспечивает поддержание ее внешней формы, дает возможность клетке суш,ествовать в гипотонических растворах. В первую очередь, в этом заслуга пептидогликана. Структурная дифференцировка клеточной стенки у грамотрицательных прокариот, приведшая к формированию дополнительного слоя в виде наружной мембраны, значительно расширила круг функций клеточной стенки. Прежде всего это связано с проблемами проницаемости и избирательного транспорта веществ в клетку. Наружная мембрана имеет специфические и неспецифические каналы (диффузионные поры) для пассивного транспорта веществ и ионов, необходимых клетке, т. е. осуществляет функции дополнительного клеточного барьера (основной — ЦПМ). Она препятствует проникновению в клетку токсических веществ, что находит отражение в большей устойчивости грамотрицательных прокариот (сравнительно с грамположительными) к действию некоторых ядов, химических веществ, ферментов и антибиотиков. Появление у грамотрицательных прокариот дополнительной мембраны в составе клеточной стенки фактически привело к созданию обособленной полости (периплазматического пространства), отграниченной от цитоплазмы и внешней среды специфическими мембранами и несущей важную [c.19]


    Окаймленные поры, характерные для сосудистых клеток (сосудов, волокон, трахеид), отличаются строением от простых пор. Отверстия в смежных клеточных стенках по направлению к поровой мембране расширяются, образуя камеру поры (рис. 2.9, в и г). Форма отверстий окаймленных пор может быть очень разнооб- [c.15]

    Вторичная клеточная стенка пронизана многочисленными порами. В области поры клеточная стенка очень тонка поверх [c.67]

    Тонкая первичная стенка обычно состоит из неупорядоченной решетки микрофибрилл целлюлозы, заполненной гемицеллюлозами, а позднее и лигнином. Первичная клеточная стенка в молодых растущих клетках расширяется до тех пор, пока не прекратится рост их и не начнет откладываться вторичная стенка. [c.319]

    Со структурой древесины тесно связано и такое свойство, как проницаемость жидкостями и газами. Проницаемость древесины характеризует ее способность пропускать жидкость или газы под давлением, что очень важно для процессов переработки древесины. Проницаемость обусловлена существованием в древесине системы сообщающихся через поры полостей клеток и межклетников. Сухая клеточная стенка, как уже отмечалось, имеет ниЗкую пористость, а ее компоненты или входят в кри- [c.255]

    К капиллярным пространствам первого порядка относят более крупные капилляры межклетники, полости клеток и поры в стенках клеток. К капиллярным пространствам второго порядка относят более тонкие капилляры в клеточной стенке между ламеллами, фибриллами, микрофибриллами и внутри микрофибрилл. В абсолютно сухих клеточных стенках субмикроскопические капилляры практически закрыты (внутренняя поверхность абсолютно сухой древесины, по мнению большинства исследователей, не превышает 1м г). Они открываются при набухании древесины в результате взаимодействия ее с водой или влажным воздухом. Это сопровождается значительным увеличением внутренней поверхности древесины. [c.261]

    О механизме проникновения в клетку ДНК в процессе электропорации известно очень мало. По-видимому, как и при химически индуцированной трансформации, в результате электрошока в клеточной стенке образуются временные поры, через которые ДНК и проходит в клетку. [c.77]

    Химические методы разрушения клеточных стенок включают обработку щелочью, органическими растворителями или детергентами. Если белковый продукт не разрушается при pH от 10,5 до 12,5, то можно без труда и дешево ли-зировать большие количества бактериальных клеток. Например, рекомбинантный гормон роста человека очень просто выделить из клеток Е. соИ обработкой гидроксидом натрия при pH И. После обработки щелочью не остается практически ни одной жизнеспособной клетки, что автоматически решает проблему утечки рекомбинантных микроорганизмов. Обработка органическими растворителями - это простой и недорогой способ разрушения клеток, который используется для выделения ферментов из дрожжей. Однако, чтобы убедиться в том, что в подобранных условиях белковый продукт не денатурирует, необходимо провести предварительное тестирование. Под действием детергентов в мембранах бактериальных клеток образуются поры, через которые белки и другие молекулы выходят из клетки. К сожалению, детергенты дороги, в больщинстве случаев в их присутствии белки денатурируют, а кроме того, они могут загрязнять конечный продукт. [c.365]

    Деструкция вещества клеточной стенки при УФ-облучении вызывает контракцию древесины с появлением микротрещин вдоль сложной срединной пластинки и вдоль границы между слоями и S2, особенно в поздней древесине [69]. Появляются также диагональные борозды, идущие в направлении ориентации фибрилл в слое Sa- В древесине хвойных пород отверстия окаймленных пор расширяются или повреждаются микротрещинами. [c.276]

    Бактерии разрушают древесину ограниченно, поскольку они, размножаясь делением клеток, не могут продвигаться в древесине, за исключением той, которая находится под водой. Бактерии имеют тенденцию создавать колонии в паренхимных клетках, используя белки в качестве источника питания, а также в камерах пор, где они растворяют поровые мембраны. Бактерии могут также поражать клеточные стенки, так как они способны разрушать полисахариды и лигнин, хотя и в ограниченной степени. [c.299]

    Для отечественных древесных пород пористость лежит в пределах от 40 до 77%. Пористость древесины обусловлена наличием в ее структуре полостей клеток, межклетников и неутолщившихся участков клеточных стенок (мембраны пор), пронизанных мельчайшими отверстиями. Сформировавшаяся клеточная стенка в ненабухшем состоянии имеет низкую пористость (<5%). Следовательно, при почти постоянном значении плотности клеточных стенок для разных пород плотность древесины будет связана с толщиной клеточных стенок. Для древесины хвойных пород она зависит также от соотношения ранней и поздней древесины. У древесины [c.254]

    Грибы бурой гнили сравнительно избирательно деструктируют полисахариды, но лигнин при этом также подвергается некоторой деградации. При глубоком поражении древесины гнилью остается лигнинный скелет, что позволяет изучать распределение лигнина в клеточных стенках [24, 30, 1771, Гифы проникают в древесину по лучам, откуда они через поры распространяются по клеточным стенкам. Гифы, растущие в люменах клеток, находятся в тесном [c.300]


    Разрушение древесины под действием бактерий протекает очень медленно по сравнению с действием грибов. Бактерии не способны увеличиваться в размерах и их распространение обусловливается делением клеток. Начальная колония бактерий в древесине возникает в результате заражения лучевых паренхимных клеток, хотя может наблюдаться дополнительное беспорядочное появление бактерий на стенках других клеток древесины. Бактерии поселяются в отверстиях пор, разрушая поровые мембраны с помощью пекти-нолитических и целлюлолитических ферментов [48, 73, ПО]. На внешнем крае окаймлений пор становятся заметными круглые или эллиптические перфорации. Поровые мембраны паренхимных клеток разрушаются прежде мембран окаймленных пор [104]. Разрушение клеточных стенок начинается с зоны лизиса, возникающей при контакте с бактериями. Затем эрозия стенок углубляется и появляются впадины и полости, которые все увеличиваются, пока не разрушится вся клеточная стенка [28, 48, 66]. В первой фазе разрушения клеточной стенки исчезает двойное лучепреломление, что указывает на атаку бактериями упорядоченных участков целлюлозы [108]. [c.320]

    При газовом нагреве тепло передается в основном путем конвекции внешней поверхности куска древесины. В поры куска парогазы не проникают. Наибольшей проницающей способностью обладает водород, но его содержание в парогазовых смесях при низких температурах начальных периодов пиролиза очень низкое. От внешней поверхности куска древесины тепло передается к внутренним слоям сложным путем, суммируясь из теплопроводности клеточных стенок, конвекции парогазов клеточных полостей, лучеиспускания от более нагретой клеточной стенки к противоположной, менее нагретой. При этом тепло передается сплошной полосой, подвергая одновременному термическому разложению все составные части клеточной стенки (гемицеллюлозы, целлюлозу и лигнин) при температуре, [c.31]

    Структурная дифференцировка клеточной стенки у грамотрицательных эубактерий, приведшая к формированию дополнительного слоя в виде наружной мембраны, значительно расширила круг функций клеточной стенки. Прежде всего это связано с проблемами проницаемости и транспорта веществ в клетку. Наружная мембрана имеет специфические и неспецифические каналы (поры) для пассивного транспорта веществ и ионов, необходимых клетке, т.е. осуществляет функции молекулярного сита . На- [c.36]

    Механизм скользящего движения не ясен. Согласно гипотезе реактивного движения оно обусловлено выделением слизи через многочисленные слизевые поры в клеточной стенке, в результате чего клетка отталкивается от субстрата в направлении, противоположном направлению выделения слизи. Однако анализ этой модели привел к заключению, что для обеспечения скольжения по реактивному механизму клетке необходимо в течение 1 с выделять такой объем слизи, который во много раз превосходит ее цитоплазматическое содержимое. [c.43]

    Вегетативное тело. Вегетативное тело (таллом) гриба состоит из нитей толщиной около 5 мкм, сильно разветвленных и разрастающихся по поверхности или во всем объеме питательного субстрата. Эти так называемые гифы состоят из клеточных стенок и цитоплазмы с ее включениями. Гифы либо не имеют поперечных перегородок (у низших грибов), либо разделены такими перегородками (септами) на клетки (у высших грибов). В последнем случае, однако, цитоплазма одной клетки сообщается с цитоплазмой соседней клетки через пору, находящуюся в центре перегородки (рис. 1.21). [c.54]

    Во вторичных клеточных стенках соседствующих клеток растений также образуются поры, в которых разделяющими клетки структурами являются лишь первичная оболочка и серединная пластинка (рис 33а, б) [c.111]

    Рис 33 Схематичное изобра жение простой (а) и окаймлен ной (б) пор у некоторых рас тений (продольный разрез) 1 — срединная пластинка вме сте с первичной клеточной стенкой 2 — свод окаймлен ной поры 3 — окаймленная пора в плоскостном изобра жении [c.111]

    Большинством ученых признана, что проникновение варочного раствора в толщу древесного композита происходит в первую очередь через открытые полости клеток, образовавшиеся при измельчении древесины в щепу. Дальнейшее его продвижение к срединной пластинке осуществляется через поры клеточной стенки, а также по микро-и субмикрокапиллярной системам. [c.284]

    Например, чтобы изготовить глицериножелатиновые препараты для наблюдения плазмодесм в порах клеточных стенок [c.96]

    Впитываемость водного раствора ингибитора системой макрокапилляров может быть охарактеризована показателем впитьшаемости по Коббу, впитываемость микрокапиллярами клеточной стенки волокна — только по сорбционной способности волокна по отношению к конкретному ингибитору. Высокая впитываемость по Коббу в условиях интенсивной сушки не является достаточным условием, предотвращающим появление налета солей ингибитора на поверхности бумаги. Это становится очевидным, если рассмотреть процесс появления налета ингибитора на поверхности бумаги с позиции тепло-и массообмена в процессе сушки. В сушку поступает бумага с ка-пиллярноудержанной влагой, и период постоянной скорости сушки заключается в выходе воды из макрокапилляров и ее испарении на поверхности бумаги. Это происходит до тех пор, пока влажность на поверхности бумаги выше гигроскопической. [c.155]

    Таким образом, в определенных условиях гемицеллюлозы, как и другие компоненты клеточных стенок, способны выполнять функции резервных веществ. Есть основание предполагать, что процессы такого рода протекают значительно чаще, чем это считалось до сиХ пор. Так, например, известно, что в стволах многолетних лиственниц с возрастом содержание арабогалактана увеличивается, причем последний локализуется главным образом на границе ядра и заболони, а также в ядре. Но поскольку эта граница ежегодно пе-, ремещается в сторону периферии, мы можем предполагать одно- временное перемещение полисахарида арабогалактана, входящего в состав клеточных стенок древесины. Этот вывод подтверждается также исследованием локализации фотосинтезированных компонентов клеточных стенок, меченных радиоактивным углеродом. Более подробно эти вопросы были рассмотрены выше. [c.424]

    Стенкн сосудов и паренхимных клеток по ориентации микрофибрилл несколько отличаются от стенок волокон. Определенные особенности в ориентации целлюлозных микрофибрилл характерны для клеточных стенок реактивной древесины. В стенках трахеид сжатой древесины в слое 82 угол ориентации близок к 45°, т.е. намного больше, чем у нормальной древесины. В стенках волокон тяговой древесины в О-слое микрофибриллы ориентированы почти параллельно оси волокна. Изучение окаймленных пор показало, что в торусах мембран наблюдается кольцевая ориентация микрофибрилл целлюлозы, а в окружающей торус маргинальной (краевой) зоне мембраны тяжи микрофибрилл ориентированы радиально и удерживают торус. В заболонной древесине торусы не лигнифицнрованы отложение в них лигнина происходит при образовании ядровой или спелой древесины. [c.222]

    Экстрактивные вещества в ядровой древесине Jюкaлизyют я не только в лучевой паренхиме, но и пропитывают стенки волокон, покрывают (инкрустируют) мембраны пор, в лиственных породах закупоривают сосуды. Основная масса этих веществ представлена гидрофобными компонентами, что снижает гидрофильность клеточных стенок и водопроницаемость ядровой древесины. Клеточные стенки ядра содержат меньше воды, чем заболонь. Все это приводит к тому, что ядровая древесина труднее перерабатывается в щепу, хуже пропитывается водными раство- [c.536]

    К макрокапиллярной системе относятся также анатомические элементы древесного вещества, как сосуды, сердцевинные лучи, полости клеток, различного типа поры микрокапиллярная система образовалась при формировании клеточных стенок между отдельными слоями и микрофибриллами субмикрокапиллярная система в основном возникает между элементарными фибриллами в процессе варки [63]. [c.283]

    Проведение водных растворов и обмен содержимого клеток в живой части древесины возможны благодаря существованию пор в стенках клеток. Если не принимать во внимание вариаций, то существуют только два главных типа пор простые и окаймленные. Их комбинация дает полуокаймленные поры. Эти детали строения клеточных стенок были объектом многочисленных исследований, изложенных в литературе [14, 30, 46, 62, 68]. [c.15]

    Снижение среднего размера пор после ФГ целлюлозы осины до потери массы 0,6%, но мнению авторов [60], вызвано образованием микротрещин, которые открывают поры в клеточной оболочке, возникшие при химической обработке. Под сканирующим микроскопом наблюдается фибрилляция волокон, вызванная ФГ, Предполагается, что ксилан, покрывающий микрофибриллы целлюлозы, гидролизуется в большей степени, чем это можно обнаружить по количеству растворившихся при ФГ ксилозы и олигосахаридов кснланового ряда. Возможно, что ксилан гидролизуется частично и притом остается в клеточной стенке волокна. Так как ксилан, окружающий микрофибриллы целлюлозы, определяет силы когезии между волокнами, то частичный гидролиз его влияет на бумагообразующие свойства целлюлозной массы. [c.235]

    Простые поры — это отверстия в смежных клеточных стенках, имеющие тонкую мембрану с узкими отверстиями на участке сложной срединной пластинки. Простые поры существуют только в паренхимных клетках. Для обмена плазматическим содержимым поровые мембраны пронизаны плазматическими нитями — плазмодесмами [15, 34] (рис. 2.9, а, см. вклейку). [c.15]

    Клеточная стенка бацилл, например Ba illus subtilis, приблизительно соответствует толщине 40 молекул пептидогликана. В целом клеточную стенку грамположительных эубактерий можно представить в виде губчатой структуры с порами диаметром примерно 1 — 6 нм. Возможность прохождения молекул через такую клеточную стенку определяется ее зарядом и размером пор. [c.33]

    Клеточная стенка утолщается с возрастом клетки и может достигать, например у La toba illus a idophilus, 0,8 мкм Клеточная мембрана, напротив, остается более или менее постоянной по толщине вавсе периоды развития прокариотических клеток (0,0075 мкм) и с более или менее постоянными порами диаметром около 1 нм [c.92]

    Вак - вакуоли, Д - диктиосомы, КСт - клеточная стенка. Ли - липидные капельки, Мит - митохондрии, Мтр — микротрубочки, П - поры с плазмодесмами, ПМ — плазматическая мембрана, СП - секреторные пузырьки, Хл - хлоропласты, ЦПл - цитоплазма, Я - ядро [c.40]


Смотреть страницы где упоминается термин Поры клеточной стенки: [c.400]    [c.400]    [c.282]    [c.145]    [c.189]    [c.136]    [c.261]    [c.298]    [c.298]    [c.69]    [c.424]    [c.237]    [c.381]    [c.94]    [c.111]    [c.343]   
Молекулярная биология клетки Том5 (1987) -- [ c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Лук порей

Стевны

Стейси



© 2025 chem21.info Реклама на сайте