Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействия макромолекул

    Измерение вязкости осложнено тем, что растворы некото-рых полимеров не являются ньютоновскими жидкостями, т. е. для них величина т] не является постоянной, а уменьшается с ростом градиента скорости течения раствора в капилляре. При значительных концентрациях это изменение обусловлено наличием структуры, образованной взаимодействием макромолекул между собой (см. работу 44). [c.292]


    Физико-химические свойства растворов высокомолекулярных соединений определяются размерами и формой макромолекул в растворе, интенсивностью взаимодействия макромолекул между собой и сродством данного соединения к растворителю. По этому признаку растворители могут быть разделены на так. называемые хорошие (высокое сродство) и плохие (низкое сродство). В хороших растворителях полимеры способны образовывать истинные растворы. В таких растворителях высокомолекулярные соединения находятся не в виде мицелл или пачек, а в виде отдельных макромолекул. Истинные растворы ВМС подчиняются правилу фаз Гиббса. В частности, это означает, что при ограниченной растворимости концентрация насыщенного раствора зависит только от температуры и не зависит от пути образования раствора (при нагревании или при охлаждении). [c.436]

    Постоянная К характеризует взаимодействие макромолекул с растворителем. Ее называют вискозиметрической константой Хаггинса. Значение константы К позволяет оцепить степень сродства между полимером и растворителем. Чем больше компоненты раствора различаются по природе, тем больше коэффициент К. Увеличение константы Хаггинса прн ухудшении качества растворителя обусловливается возрастанием числа случайных контактов макромолекул. [c.195]

    Приготовление прядильной массы. Получение вязких концентрированных растворов (7—25%-ных) высокополимеров в доступных растворителях (щелочь, ацетон, спирт и пр.) или перевод смолы в расплавленное состояние — обязательное условие для осуществления процесса прядения или, правильнее сказать, формования химических волокон. Только в растворе или в расплавленном состоянии могут быть созданы условия, позволяющие снизить энергию взаимодействия макромолекул и после преодоления межмолекулярных связей ориентировать молекулы вдоль оси будущего волокна (рис. 90). [c.208]

    Задача настоящей книги — изложение закономерностей меж-молекулярного взаимодействия макромолекул сырья, формирования и разрушения обратимых и необратимых сложных структурных единиц, влияния на эти процессы разных факторов (состава дисперсионной среды, различных добавок-модификаторов, механических перемешиваний, скоростей сдвига и т. д.), расслоения нефтяных дисперсных систем на фазы с различной степенью кристалличности и структурно-механической прочностью. [c.6]


    В пределах линейной зависимости я/с от с (VI. 73) коэффициент Л2 характеризует степень отклонения от идеальности, обусловлен ную взаимодействием макромолекул с растворителем. Он может быть определен различными методами осмотическим, по светО рассеянию, по давлению пара растворителя и др. Взаимодействие между макромолекулами проявляется в отклонении от нулевого значения остальных вириальных коэффициентов. [c.321]

    С учетом взаимодействия макромолекул и изменения константы К с длиной молекулы в настоящее время для определения молекулярной массы наиболее широко используют уравнение Марка — Куна — Хаувинка  [c.474]

    Макромолекулы могут реагировать друг с другом, образуя амидные или сложноэфирные связи. В случае взаимодействия макромолекул полиамида происходит реакция переамидирования  [c.60]

    При небольших концентрациях соблюдается линейная зависимость п/с от с, т. е. можно ограничиться вторым вириальным коэффициентом, который характеризует степень отклонения раствора от идеального, обусловленную взаимодействием макромолекул с растворителем. [c.132]

    Сольватационное взаимодействие макромолекул и молекул растворителя существенно изменяет способность полимерных цепей к конформационным переходам, т.е. влияет на их равновесную гибкость. По величине термодинамического сродства к полимеру все растворители делятся на хорошие и плохие . Для термодинамически хороших растворителей характерно образование достаточно мощных сольватных оболочек вокруг макромолекул, что существенно уменьшает возможность их конформационных переходов, т.е. обусловливает снижение равновесной гибкости. [c.92]

    Процесс растворения высокомолекулярных соединений связан со стадией набухания и увеличением их массы и объема за счет диффузии молекул растворителя в пространственный каркас высокомолекулярного соединения и его растяжения благодаря гибкости и эластичности звеньев. При этом происходит непрерывное взаимодействие макромолекул высокомолекулярного вещества и молекул растворителя. Если силы этих взаимодействий оказываются больше сил сцепления макромолекул, происходит разделение макромолекул и образование раствора высокомолекулярного соединения. [c.29]

    Для экспериментального изучения свойств отдельных макромолекул обычно берут очень разбавленный раствор полимера, что практически устраняет взаимодействие макромолекул между собой. Основная величина, характеризующая размеры цепи,— расстояние между ее концами к. Это же расстояние можно [c.125]

    Величина [т]] зависит от энергии взаимодействия макромолекул ВМВ и молекул растворителя, которая определяется природой веществ и размером макромолекул. Размер макромолекулы пропорционален ее молярной массе, которая связана с величиной т ] соотношением [c.218]

    Интерпретация результатов, полученных этими методами, сильно осложняется, когда в растворе находятся не компактные частицы, а рыхлые клубки гибких молекулярных цепей. Если молекулы компактны, их взаимодействие невелико и влияние его становится заметным лишь при высоких концентрациях. При исследовании компактных структур результаты легко экстраполировать до нулевой концентрации. При исследовании рыхлых клубкообразных структур возникают осложнения, вызываемые взаимодействием макромолекул и гидродинамикой их оседания. В этом случае скорость седиментации так быстро изменяется с повышением концентрации, что экстраполяция может повести к существенным ошибкам. [c.457]

    Зависимость значения т]уд/с от концентрации следует отнести за счет взаимодействия макромолекул. [c.461]

    Надмолекулярный уровень организации полимеров учитывает межмолекулярное взаимодействие макромолекул друг с другом, степень упорядоченности их взаимного расположения. Последнее определяется уже не только способом синтеза полимера, но и способом его переработки. [c.298]

    В настоящее время для определения молекулярного веса предложено уравнение, учитывающее взаимодействие макромолекул даже в разбавленных растворах и изменение константы Км с длиной молекулы  [c.461]

    Повышение вязкости растворов высокомолекулярных веществ при введении в них различных добавок объясняется либо увеличением взаимодействия макромолекул друг с другом в результате освобождения под влиянием примесей активных мест на молекулярных цепях, либо образованием химических связей между молекулами полимера и примесей (действие окислов металлов, альдегидов). Понижение вязкости.также можно объяснить двумя причинами либо деструкцией макромолекул под влиянием примесей (действие аммиака, альдегидов, кислот и т. д.), либо уменьшением взаимодействия цепей друг с другом в результате взаимодействия примесей с активными группами макромолекулы. [c.465]


    Однако этот расчет не учитывает взаимодействия макромолекулы с молекулами растворителя. Это взаимодействие приводит к ограничению свободы вращения звеньев и к растягиванию цепи, т. е. к увеличению среднего расстояния между концами цепи. Если это увеличение выразить при помощи пара- 2  [c.290]

    Таким образом, влияние конфигурации макромолекулы в растворе может быть выражено посредством возведения величины молекулярного веса в степень а, постоянную для данной системы полимер — растворитель и лежащую в пределах 0,5—0,8 в зависимости от взаимодействия макромолекул с растворителем  [c.291]

    Для многих свойств пластмасс существенным является характер взаимодействия макромолекул полимера с поверхностью листов, волокон или зерен наполнителя. Некоторые вещества (дерево, бумага, ткань и др.) впитывают тот или другой полимер, по крайней мере в поверхностные слои. Другие, как, например, стеклянные волокна, не впитывают полимер, а соприкасаются с ним только на самой поверх-, ности. Очевидно, в обоих случаях связи, образующиеся между макро-> молекулами полимера и наполнителем, зависят от их химического состава, но в общем впитывание благоприятствует образованию более прочного сцепления между ними. [c.225]

    Характер межмолекулярных взаимодействий макромолекул друг с другом и с растворителем, определяемый природой полимера и растворителя, может способствовать при слабом межмолекулярном взаимодействии с растворителем свертыванию гибких Макромолекул в клубки, а при сильном межмолекулярном взаимодействии звеньев макромолекул с молекулами растворителя их вытягиванию. [c.333]

    Химическое модифицирование поверхности кремнезема, проведенное посредством реакций различных модификаторов с поверхностными силанольными группами (см. лекцию 5), позволяет, как это было показано в лекциях 14, 16 и 17, существенно изменить адсорбционные свойства поверхности и, в частности, характер адсорбции полимеров. Свойства модифицированной поверхности определяются строением и концентрацией привитых органических групп. Из рис. 18.2 видно, что на аэросиле [высокодисперсном непористом кремнеземе (см. лекцию 3)] с гидроксилированной поверхностью полистирол адсорбируется из растворов в неполярном растворителе ССЦ положительно и адсорбция достигает предельного значения (около 1 мг/м , кривая /). Прокаливание при 1000°С, после которого силанольные группы остаются лишь на небольшой части поверхности, несколько (повышает вклад в неспецифическое межмолекулярное взаимодействие макромолекул полистирола с матрицей кремнезема из растворов ССЦ (кривая 2). [c.335]

    Разделение олигомеров и полимеров методом жидкостной хроматографии на твердых адсорбентах может быть основано на двух главных эффектах адсорбционном и диффузионном. В первом случае время удерживания определяется в основном энергиями адсорбционного взаимодействия макромолекул и молекул элюента с поверхностью твердого тела и между собой (как и в адсорбционной жидкостной хроматографии молекул, см. лекции 16 и 17). Во втором случае время выхода вещества зависит в основном от гео- [c.337]

    При взаимодействии макромолекул полиэфира протекает (реакция переэтерификации. [c.60]

    Надмолекулярная структура. Способ укладки макромолекул в конденсированном состоянии определяется их регулярностью. Регулярные макромолекулы кристаллизуются, нерегулярные образуют аморфные системы. Количественными параметрами надмолекулярной структуры кристаллического полимера являются параметры его кристаллической решетки, а также степень кристалличности. Структура аморфного полимера характеризуется ближним порядком в расположении структурных единиц (сегментов) и однозначно охарактеризована быть не может. Косвенными характеристиками аморфной структуры полимера и интенсивности взаимодействия макромолекул являются его плотность и энергия когезии. [c.92]

    Коэффициент 1 служит характеристикой взаимодействия макромолекул в системе полимер — растворитель. Его значение практически не зависит от молекулярного веса полимера и меняется лишь [c.136]

    Характеристическая вязкость, отражающая гидродинамическое сопротивление молекул полимера потоку жидкости, может быть определена для разбавленных растворов полимеров, в которых взаимодействие макромолекул между собой настолько мало, что им можно пренебречь. Для нахождения характеристической вязкости устанавливают зависимость вязкости от концентрации в довольно узком интервале низких концентраций и полученные результаты экстраполируют к нулевой концентрации. [c.137]

    Если энергия взаимодействия макромолекул при одном их расположении равна Ни а при другом — то на их перегруппировку потребуется энергия и = 1/2—111. Вероятность такого процесса выражается формулой. [c.319]

    В химическом отношении полимеры имеют двойственный характер, так как следует различать химические взаимодействия отдельных звеньев и химическое взаимодействие макромолекул. Макромолекула поливинилового спирта содержит в элементарных звеньях гидроксильную группу —ОН, которую можно этерифицировать  [c.495]

    Взаимодействие макромолекул приводит к упорядоченному их расположению (ассоциаты), и в конечном итоге полимеры могут переходить в упорядоченное состояние — кристаллическое. Взаимодействие макромолекул между собой создает так называемую надмолекулярную структуру, также влияющую на свойства полимерных материалов (В. А. Каргин). [c.497]

    Методом сополимеризации или совместной поликонденсации можно в очень широких пределах регулировать силы внутримолекулярного и межмолекулярного взаимодействия макромолекул, а также 1юлучать полимеры пространственной структуры с различной частотой расположения поперечных связей. [c.510]

    Метод определения воздействия топлив на резины по методу ЦИАМ заключается в двустадийной обработке образцов резины в приборе статического окисления (ОТСУ) цетаном при 150 °С и топливом при 140 °С в течение 4 ч. На первой стадии в отсутствие кислорода воздуха из резин экстрагируются антиокислители. На второй стадии кислородом воздуха окисляются топливо и резина. Определяющим фактором отверждения резин является взаимодействие макромолекул резины с активными продуктами окисления топлив — радикалами, образующимися в результате распада гидропероксидов. Оценка воздействия топ-лив на резину проводится по значениям сопротивления разрыву и относительного удлинения образцов. [c.210]

    Нефтяные свободно- и связаннодиоперсные системы характеризуются структурно-механической прочностью. Под структурно-механической прочностью нефтяной дисперсной системы понимается способность ее сопротивляться действию внешних сил. Чем больше силы взаимодействия макромолекул ВМС в ассоциате и между ассоциатами в системе, тем выше структурно-механическая прочность НДС. [c.14]

    На каждой ступени поликонденсации образовавишеся макромолекулы могут вступать в реакцию как с молекулами исходных мономеров, так и с другими л1акромолекулами. По мере завершения процесса поликонденсации и снижения концентрации исходных веществ в реакционной смеси взаимодействие макромолекул между собой становится все менее вероятным. С увеличением размера макромолекул возрастает вязкость реакционной среды и уменьшается подвижность макромолекул, следовательно, уменьшается и число их столкновений. Чтобы предотвратить полное затухание реакции поликонденсации, необходимо повышать температуру реакционной смеси (рис. 56). [c.165]

    Многочисленными экспериментальными исследованиями уста иовлепо, что наряду с реакцией поликонденсации протекают про цессы, вызывающие деструкцию образующихся макромолекул по длине их цепи. Эти деструктивные процессы являются резуль гатом взаимодействия макромолекул полимера с исходными ве ществами и низкомолекулярными побочными продуктами поли конденсации. В зависимости от типа исходных компонентов п начальных продуктов поликонденсации процессы деструкции могут происходить по принципу ацидолиза (деструкция под действием кислот), аминолиза (деструкция полимера под действием аминов), алкоголиза (деструкция под действием спиртов). Деструктирующее действие перечисленных низкомолекулярных веществ распространяется прежде всего на макромолекулы, достигшие наибольших размеров. Вследствие меньшей стабильности и более легкой деструкции макромолекул высших фракций про- [c.167]

    Следует заметить, что помимо указаннЬй причины, резкое увеличение вязкости с повышением концентрации может происходить и в результате образования в системе структур. Понятно, что при этом раствор будет обладать уже структурной вязкостью, в то время как при первом объяснении концентрационной аномалии допущение о взаимодействии макромолекул не обязательно. [c.464]

    Электронные микроскопы дают возможность увидеть отдельные коллоидные частицы, крупные макромолекулы (например, белков), вирусы, элементы кристаллической решетки и другие субмикроско-пические объекты размером 10 —10" см. Методом электронной микроскопии можно также наблюдать структуру полимеров. Если классическим методом структурного анализа (рентгенографическое исследование) можно получить сведения лишь о строении областей, размеры которых в десятки и сотни раз меньше длины полимерных молекул, то применение электронной микроскопии позволяет исследовать структуры, образующиеся при взаимодействии макромолекул (надмолекулярные структуры). [c.166]

    Суммарное изменение энергии Гельмгольца равно А А = = Аг7 — ТАЗ. Увеличение энергии Д17 не компенсируется увеличением энтропии, связанным с равномерным распределением твердой фазы в среде (Д5 смешения больше нуля). В итоге изменение энергии Гельмгольца АА > О, что и определяет невозможность самопроизвольного образования раствора коллоидов. Отсюда вытекает термодинамическая неустойчивость коллоидного раствора. При образовании растворов ВМС, характеризующихся сильным взаимодействием макромолекул с растворителем, изменение внутренней энергии А С/ <0 Соответственно изменение энергии Гельмгольца АА < 0 по этому образование таких растворов происходит самопроиз вольно образуются термодинамически устойчивые системы [c.415]

    Как известно, ВМС способны к образованию термодинамически равновесных молекулярных растворов с особыми термодинамическими свойствами, обусловленными гибкостью цепей макромолекул, обладающих больщим числом конформаций. Вместе с тем исследования последних лет показали, что для этих систем характерно развитие процессов ассоциации макромолекул в растворах в зависимости от характера взаимодействия макромолекул друг с другом и с молекулами растворителя и от концентрации раствора макромолекулы могут существовать либо в виде гибких цепей (статистических клубков), либо как плотные глобулы свернутых цепей, либо в виде ассоциатов друг с другом. При развитой мозаичности — различии полярности участков цепей макромолекул — они, как указывалось, могут обладать значительной поверхностной активностью для подобных веществ характерна также резко выраженная склонность к агрегированию молекул и их глобулизации наряду со способностью к солюбилизации нерастворимых в данной среде веществ. [c.236]

    Согласно (29.11), приведенная вязкость раствора полимера при постоянной молекулярной массе не зависит от его концентрации и графически доитжиа соответствовать горизонтальной прямой (рис. 29.9, /). Однако у большинства полимеров приведенная вязкость возрастает с увеличением концентрации в результате взаимодействия макромолекул (рис. 29.9, 2). Зависимость является линейной только в области небольших концентраций. Обычно определяют приведенную вязкость для нескольких концентраций и полученную кривую экстраполируют к нулевой концентрации. Отсекаемый на оси ординат отрезок дает величину так называемой характеристической вязкости [л]  [c.473]

    Дисперсионные силы убывают также пропорционально шестой степени расстояния, т. е. являются короткодействующими. Положение изменяется, если взаимодействуют макромолекулы для больших частиц слабые ван-дер-ваальсовы силы могут суммироваться и проявлять себя на значительном удалении. Такие силы содействуют образованию мицелл, гелей, коацерватов. [c.96]

    Устойчивость поликомплексов существенно зависит от длины взаимодействующих макромолекул, что особенно наглядно проявляется в реакциях типа [c.125]


Смотреть страницы где упоминается термин Взаимодействия макромолекул: [c.307]    [c.83]    [c.155]    [c.447]    [c.463]    [c.101]   
Физика полимеров (1990) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте