Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термическая электропроводность

    Пламя представляет собой одну из разновидностей низкотемпературной плазмы и всегда содержит некоторое количество свободных электронов и ионов, что подтверждается экспериментально по наличию у него электропроводности. На рис. 1.12 приведена схема строения пламени предварительно полученной смеси светильного газа с воздухом, а также приведены температуры отдельных его участков. Оно состоит из двух областей внутренней восстановительной и внешней окислительной. Во внутренней протекают первичные реакции термической диссоциации и сгорания компонентов смеси, происходящие при не- [c.35]


    Действие излучения на металлы состоит в нарушении их кристаллической решетки при упругих столкновениях с ядрами атомов тяжелых металлов и при термических преобразованиях, что приводит к изменению ряда свойств понижению пластичности и возрастанию сопротивления пластической деформации, росту электропроводности, ускорению процессов диффузии, инициированию фазовых превращений в металле. [c.369]

    Включает описание различных физических свойств химических соединений (термические величины, вязкость, электропроводность, плотность, дипольный момент и др.). [c.128]

    Метод дифференциально-термический, электропроводности (рнс. 4). [c.22]

    Метод дифференциально-термический, электропроводности. [c.143]

    В изоляторе (диэлектрике) и в собственно полупроводнике (т. е. в полупроводнике, не содержащем ионизующихся примесей) валентная зона заполнена целиком, и поэтому для протекания электрического тока необходимо, чтобы электроны попали в следующую зону, свободную от них (рис. 113, б и в). Между изолятором и собственно полупроводником не существует принципиальной разницы, и отличительным признаком (кроме различия в электропроводности) служит величина запрещенной зоны Дб о- Условно к полупроводникам относя.т вещества с шириной запрещенной зоны, не превышающей 2 эв. Для преодоления этого энергетического барьера электроны должны получить извне дополнительную энергию либо в виде тепла—термическая электропроводность, либо путем освещения вещества—фотопроводимость, либо под действием высокого электрического потенциала—пробой диэлектрика. [c.276]

    Нефтяной кокс — высококачественный углеродистый материал— и получаемый из него искусственный графит имеют очень широкую область применения благодаря редкому сочетанию физико-химических свойств. К этим свойствам относятся высокая электропроводность, термическая и химическая стойкость в агрессивных средах, сравнительно низкий коэффициент линейного расширения, легкая механическая обрабатываемость, удовлетворительные прочность и упругопластичные свойства. [c.66]

    При поглощении водорода качество многих металлов и сплавов существенно ухудшается. При этом изменяются обычно твердость, термическая стойкость, текучесть, электропроводность, магнитные свойства и др. Обычная углеродистая сталь, например, при поглощении значительных количеств водорода становится хрупкой, в ней появляются пузырьки и трещины, являющиеся внешними признаками газовой водородной коррозии — разрушения углеродистого сплава вследствие декарбонизации по следующей примерной схеме  [c.18]

    Для карбазола — одного из основных азотсодержащих веществ нефти — исследованы физические свойства (электропроводность, магнитная восприимчивость) и установлено, что в его монокристалле имеются фазовые переходы при температурах, далеких от плавления. Показано, что носители заряда возникают при термической диссоциации молекулярных экситонов на примесях. [c.4]


    Газы обладают ничтожной проводимостью при низких температурах. Однако по мере повышения их температуры вследствие процесса термической ионизации их электропроводность возрастает, имея смешанный электронно-ионный характер. Газы и любые вещества в парообразном состоянии при высоких температурах (свыше 5000°С) достигают определенной степени ионизации, при этом существенно возрастает их электропроводность. Квазинейтральное состояние веществ, при котором заряды положительных и отрицательных частиц компенсируют друг друга, получило название плазмы. [c.203]

    Антрацит является основным компонентом угольных электродов и разнообразных угольных блоков для кладки и футеровки печей. Антрацит применяется в электродном производстве после длительной термообработки при температуре 2500 С в электрических печах в виде термоантрацита. Основные требования к качеству этого вида сырья - высокая электропроводность, механическая прочность, термическая стойкость, низкая зольность и сернистость. Некоторые сорта антрацитов используются в производстве искусственного графита. [c.10]

    Вследствие осушения уменьшается электропроводность грунта вокруг заземлителя. Для того чтобы заземление было термически устойчивым, заземлители должны иметь поверхность тем большую, чем больший ток будет проходить через них. Сопротивление растеканию заземления в наиболее сухой период года должно быть [c.140]

    Эксперимент организуется на основе идей качественного дифференциального термического анализа и дифференциальной сканирующей калориметрии, т. е. реактор с исследуемой реакционной массой и сравнительный реактор с инертным веществом подвергаются запрограммированному нагреву с помощью жидкостной ванны. При этом контроль за ходом реакции осуществляется либо по разности температур реакционной массы и инертного вещества (ДТА), либо но количеству-тепла, необходимому для сведения к нулю в каждый данный момент времени указанной разности температур путем электрического нагрева содержимого сравнительного реактора (ДСК). Различные экзотермические (и эндотермические) эффекты дают в итоге в зависимости от температуры ряд кривых каждая экзотермическая реакция выражается максимумом на АГ, Т- или ( , Г-диаграммах. Совместное параллельное снятие термограмм и кривых изменения электропроводности и расх бда паров и газов из реактора, с одной стороны, делает информацию более надежной, с другой стороны, позволяет обнаружить и сравнить с прочими наиболее эффективный канал информации о возникновении аварийной ситуации. Полученная информация в виде альбома термограмм [каждая из которых представляет собой зависимость [c.175]

    В связи с тем, что сырья для производства кокса, как правило, не хватает, используются смеси различных остатков переработки. Их состав влияет на коэффициент термического расширения кокса, а следовательно, на электропроводность и в целом качество кокса (табл. 2-2). [c.36]

    Подсчет среднего числа мостиковых ионов кислорода имеет значение для оценки ряда физических свойств стекол. С уменьшением У возрастает коэффициент термического расширения, увеличивается электропроводность, снижается вязкость. [c.196]

    На основании исследования теплоты смешения, вязкости, плотности, электропроводности, поверхностного натяжения, термического анализа и раман-спектров систем муравьиная кислота — вода и уксусная кислота — вода А. А. Глаголева установила образование соединений состава НСООН-НзО и НСООН-гНаО. [c.250]

    Кендал с рядом сотрудников исследовал взаимодействие бензойной, монохлоруксусной, трихлоруксусной кислот с альдегидами и кетонами методом термического анализа и измерением электропроводности. Оии нашли, что образуются соединения состава АВ, а в некоторых случаях AjB и ABj. Они также нашли, что прочность соединений возрастает с увеличением силы кислот. [c.250]

    Взаимодействие бензойной кислоты с анилином, о- и га-толуидином ио изменению проводимости и плотности исследовал А. В. Басков и установил образование соединения типа АВ. При изучении взаимодействия бензойной кислоты с хинолином и пиридином он установил на основании термического анализа соединение состава АВ, а по изотермам электропроводности — состава А2В (А — кислота). [c.252]

    Все это позволяет заключить, что ряд свойств конденсированной фазы (G, Н, F, V, Ср, Су, коэффициенты термического расширения, электропроводности и т. д.) вблизи абсолютного нуля перестает зависеть от температуры. [c.426]

    Основы физико-химического анализа. В основе физико-химического анализа, разработанного Н. С. Курнаковым, лежит установление зависимости между изучаемым свойством и составом системы. Результаты исследования выражаются графически в виде диаграммы состав — свойство. Изучаемыми свойствами могут быть температура плавления или кристаллизации (термический анализ), электропроводность, вязкость, плотность и т. п. [c.271]

    В начале XX в. Н. С. Курнаков и С. Ф. Жемчужный на основе термического анализа установили основные соотношения между составом двойных сплавов и их физическими свойствами электропроводностью, твердостью и давлением истечения. Найденные соотношения, проверенные на многих системах, дали возможность открыть и разъяснить происходящие в сплавах сложные превращения, которые ранее не удавалось обнаружить. [c.167]


    В полупроводнике, представляющем собой химическое соединение, свободных носителей тока нет. Только тепловое движение, поглощение света или другие энергетические факторы приводят к возбуждению электронов и делают вещество проводником электричества. Тепловое движение ослабевает с понижением температуры, соответственно убывает и электропроводность полупроводников, падая до нуля. При достаточно низкой температуре полупроводник становится изолятором, и резкой границы между ними нет. В то же время металл нельзя превратить в проводники другого типа термической обработкой. [c.160]

    Аморфные (стеклообразные) тела изотропны, т. е. векторные свойства их не зависят от направления. Эти тела имеют неправильные формы. Кристаллы характеризуются определенными формами многогранников с плоскими гранями, которые по закону гранных углов пересекаются при данной температуре у данной модификации вешества под определенными углами независимо от размеров и искажений, связанных с условиями роста кристаллов. Для каждой кристаллической модификации данного вещества свойственна определенная температура плавления. Кристаллы анизотропны у них многие так называемые векторные свойства (тепло- и электропроводность, прочность, термическое расширение, скорость роста, растворение, травление и т. д.) зависят от направления. Однако теплоемкость, плотность и прочие скалярные свойства у всех веществ не зависят от направления. [c.116]

    Бор и его соединения. Кроме кристаллического, известен аморфный бор с плотностью 1,73 г/сл . Более химически активный, чем кристаллический. Последний очень тверд. Очень чистые образцы кристаллического бора плохо проводят электрический ток. При нагревании до 600°С электропроводность увеличивается в 10 раз, что используется в полупроводниковой технике. Бор диамагнитен. Ширина запрещенной зоны у монокристаллов бора, полученных при термической диссоциации BI3, равна 1,58 эв. [c.281]

    Нитрид бора обладает низкой электропроводностью и высокой термической стабильностью. При высоких температурах он окисляется и образует окись бора В2О3, которая также является хорошей смазкой. Коэффициент трения у него более высок, чем у графита и двусернистого молибдена. [c.206]

    Полупроеодл-аки,. Соединения, подобные 2пО, 7пЗ и РЬ8, не являются хорошими проводниками, но они имеют электроны, которые могут быть термически возбуждены с очень низкой энергией активации (10—20 ккал), что обусловливает появление электропроводности. Поверхности и углы таких твердых тел могут служить центрами окислительно-восстановительных и, возмоншо, свободно-радикальных реакций. [c.532]

    В. И. Касаточкин с сотрудниками [98—103, 148] все коксы, в том числе и нефтяные, относит к карбонизированным веществам. За исключением графитов все карбонизированные вещества являются аморфными сте.клоподобными высокополимера-ми. Основным структурным элементом карбонизированного вещества является плоская атомная сетка циклически полиме-ризованного атома углерода с боковыми радикалами в виде разветвленных цепей по всем трем измерениям линейно полимеризованных атомов углерода. Химические превращения в процессе термической обработки углеродистых веществ сопровождаются относительным возрастанием содержания углерода (карбонизацией) и глубокими изменениями молекулярной структуры. При этом создается межсеточная упорядоченность, увеличиваются размеры углеродных сеток и возрастает электропроводность вещества. [c.66]

    Графнтированные электроды производят из угольных дополнительным их нагревом в электрических печах примерно до 2500 °С. Графитпрованные электроды отличаются от угольных более высокими электропроводностью и теплопроводностью, большей термической стойкостью, отсутствием сернистых соединений, незначительным содержанием золы. При графитировании электросопротивление электродов уменьшается в 5—6 раз, поэтому для них допустима в 2—3 раза большая плотность тока, чем для угольных, а при одинаковом токе можно применять графитированные электроды значительно меньшего сечения. Стоимость графитированных электродов высокого качества в 2—3 раза больше, чем угольных. [c.16]

    Мозаичная микроструктура пекового кокса, сходная с соответствующей микроструктурой нефтяного кокса (рис. 2-10), может определяться содержанием зольйых примесей. С ростом содержания золы в пеке наблюдается исчезновение ламелярной микроструктуры коксов, сопровождающееся уменьшением их плотности и электропроводности [2-72]. Одновременно с этим наблюдается рост коэффициента термического расширения и изотропности пекового кокса (табл. 2-8). Особенно резко изменяется оптическая анизотропия. Наиболее заметные изменения показателей наблюдаются при содержании золы до 1% (масс.). С ростом содержания золы наблюдается уменьшение плотности прокаленного и графитированного коксов, а это сопровожда( тся уменьшением способности пекового кокса к графитируемости, по данным изменения Ьс (рис. 2-36). В связи с этим содержание золы в пековом коксе ограничивается 0,3-0,4%. [c.97]

    После того как в конце прошлого века Вант-Гоффом было сформулировано представление о твердых растворах, выяснилось, что множество твердых веществ самого различного происхождения—сп-лавы, стекла, многие горные породы и минералы — представляют собой твердые растворы. В результате термодинамического исследования Розебума (1899 г.) установлены основные тины диаграмм состояния двойных систем с твердыми растворами. В начале нашего века Н. С. Курнаков заложил основы физико-химического анализа и развил физико-химическое направление изучения твердых веществ. При исследовании металлических сплавов он применил не только диаграммы состояния типа состав — температура плавления, но и типа состав — электропроводность, состав — твердость, разработанные им совместно с С. Ф. Жемчужиным, а также изобрел самопищущий прибор для термического анализа — пирометр Курнакова. Исходя из идеи Д. И. Менделеева о неопределенных соединениях как настоящих химических соединениях, Н. С. Курнаков, как мы помним, постулировал существование двух типов индивидуальных химических соединений — дальто-нидов и бертоллидов и указал, что первые имеют постоянный, а вторые переменный состав. Бертоллиды, по Курнакову, представляют собой твердые растворы неустойчивых в свободном состоянии соединений постоянного состава. [c.164]

    НИТРИДЫ — соединения азота с эле ктроположительнымп элементами (глав ным образом, с металлами), Н. обладают высокой твердостью, термической устойчивостью, тепло-и электропроводностью, химической стойкостью против действия кислот и щелочей, огнеупорностью. Н, применяются в сплавах. Некоторые Н обладают высокими каталитическими свойствами. [c.175]

    Более детальные сведения о термическом поведении полимеров получают, совмещая ДТА с другими методами исследования термогравиметрией, газовой хроматографией, термомеханическим методом исследова1 ия полимеров, определением электропроводности и т. д. [c.210]

    Двуокись серы имеет точку плавления— 75 °С (теплота плавления 1,8 ккал/моль) и точку кипения —10°С (теплота испарения 6,0 кгеал/лоЛь). Критическая температура SO2 равна 157 °С при критическом давлении 78 атм. Термическая устойчивость SQ2 весьма велика (по крайней мере до 2500 °С). Жидкая SOj имеет диэлектрическую проницаемость е = 13 (при обычных температурах) и смешивается в любых соотношениях с рядом органических жидкостей (эфиром, бензолом, сероуглеродом и др.). Она является очень плохим проводником электрического тока. Наблюдающаяся ничтожная электропроводность обусловлена, вероятно, незначительной диссоциацией rio схеме 330 5 0 + + 50 ". [c.328]

    Чтобы понизить рабочую температуру электролиза, в качестве электролита применяют только смеси Li l, выбираемого по экономическим соображениям, с другими галогенидами. Использование смесей солей при электролизе расплавов преследует и другие цели уменьшение летучести солей, частичное устранение анодного эффекта и в большинстве случаев увеличение электропроводности. Выбирая состав электролита, исходят из целесообразного сочетания ряда физико-химических характеристик его компонентов. Основной (расходуемый) компонент должен быть дешев, термически устойчив, нелетуч, относительно легкоплавок, негигроскопичен, обладать хорошей электропроводностью и возможно более низким потенциалом разложения. Второй компонент (солевая добавка) наряду с отмеченными свойствами должен иметь более высокий потенциал разложения при рабочей температуре электролиза и образовывать с основным компонентом системы эвтектического типа или твердые растворы с минимумом на кривой плавкости. [c.69]

    Соли органических кислот. Оксалат бериллия [1, стр. 42]. В виде тригидрата ВеС204-ЗН20 получается при упаривании раствора основного карбоната с небольшим избытком щавелевой кислоты. Эта соль интересна тем, что она единственная из оксалатов двухвалентных металлов обладает значительной растворимостью (при 25° 24,85% в расчете на безводный оксалат). Кроме того, отмечена относительно низкая электропроводность, равная одной четвертой электропроводности эквивалентного раствора сульфата бериллия. Это объясняется тем, что бериллий в растворе частично находится в виде комплекса [Ве(С204)21 . При нагревании тригидрат неустойчив и уже около 50 переходит в моногидрат, который выше 225° разлагается до окиси. Скорость разложения увеличивается с ростом температуры. Термическое разложение оксалата предложено использовать как одну из стадий получения окиси бериллия особой чистоты. [c.176]


Смотреть страницы где упоминается термин Термическая электропроводность: [c.648]    [c.527]    [c.512]    [c.41]    [c.10]    [c.452]    [c.25]    [c.495]    [c.422]    [c.648]    [c.224]   
Физикохимия полимеров (1968) -- [ c.298 ]

Физикохимия полимеров Издание второе (1966) -- [ c.298 ]

Физикохимия полимеров (1968) -- [ c.298 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние термической обработки на электропроводность селенидов мышьяка

Деполяризация термическая электропроводность

Термические превращения и электропроводность смеси кремнезема и карбоната лития фиг

Термический анализ (термография) и другие термические методы Берг, Н. П. Бурмистрова. Применение метода электропроводности для исследования процессов обезвоживания кристаллогидратов

Термический коэффициент электропроводности



© 2025 chem21.info Реклама на сайте