Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплекс порфириновый

    Эти два соединения, хлорофилл и гем, играют важнейшую роль в сложном механизме поглощения солнечной энергии и ее превращении для использования живыми организмами. Мы уже знаем, что характерным свойством комплексов переходных металлов является наличие нескольких близко расположенных -уровней, что позволяет им поглощать свет в видимой области спектра и придает окраску. Порфириновый цикл вокруг иона Mg в молекуле хлорофилла выполняет такую же роль. Хлорофилл в растениях поглощает фотоны видимого света и переходит в возбужденное электронное состояние (рис. 20-22). Эта энергия возбуждения может инициировать цепь химических реакций, приводящих в конце концов к образованию сахаров из диоксида углерода и воды  [c.255]


    При сжигании остаточных топлив кроме снижения образующихся отложений большое значение имеет изменение их состава, поскольку в этих отложениях присутствуют вещества, вызывающие коррозию стали. В состав этих веществ входят, в частности, ванадий и натрий первый —в основном в виде растворимых в нефти металлоорганических соединений типа порфириновых комплексов, а второй — в виде галогенидов, сульфатов и др. При термическом разложении и окислении этих сое- [c.177]

    Обобщение данных по содержанию порфиринов в нефтях, проведенное автором (рис. 14), показало наличие четких различий в содержании и соотношении ванадий-никелевых порфириновых комплексов в нефтях из разных мегациклов (в пределах одного мегацикла они близки). [c.107]

    Атомы железа обычно образуют комплексы с октаэдрической координацией. Что же происходит с двумя координационными положениями выше и ниже плоскости порфиринового цикла В цитохроме с группа гема находится в углублении на поверхности молекулы белка (рис. 20-23). От каждой стенки этого щелевидного углубления к гему направлено по одному лиганду с одной стороны атом азота с неподеленной парой, принадлежащий гистидиновой группе белка, а с другой стороны атом серы с непо- [c.257]

    В производное кобальта(П) [41]. Исследования показали, что медь(П) и кобальт(П) конкурируют за одно и то же место в белке. Поскольку спектры соединений, содержащих кобальт(П), интерпретировать легче, чем спектры производных меди(П). авторы смогли прийти к выводу кобальт находится либо в центре искаженного тетраэдра, либо в пятикоординационном окружении. Интенсивная линия переноса заряда указывает на существование связи Со — SR. Отнесение всех линий спектра нативного медьсодержащего белка было проведено по аналогии. Существование порфириновых комплексов в ферментных системах можно установить по наличию в спектре характеристической полосы Соре в области 25 000 см . Эта полоса обусловлена связанным с лигандом переходом я -> я типа перехода с переносом заряда (см. гл. 5). В электронных спектрах порфириновых комплексов обнаружены также две другие полосы низкой интенсивности. Существование этих полос и их сдвиги при введении заместителей в циклы можно понять, проведя расчеты по методу МО [42]. Положения этих полос использованы для классификации цитохромов. [c.109]

    Таким образом, д-фактор можно использовать для того, чтобы различить эти две структуры. Комплексы с тетрагональным сжатием встречаются очень редко, зато комплексы с тетрагональным растяжением распространены. Порфириновые комплексы меди(П) характеризуются д-факторами д = 2,70 и д = 2,04 [5]. [c.214]


    Спин-орбитальное взаимодействие подмешивает к основному состоянию возбужденные состояния которые расщепляются кристаллическим полем, и это смешивание приводит к небольшому расщеплению в нулевом поле уровней комплекса Мп . Дипольное взаимодействие электронных спинов дает меньший эффект по сравнению с подмешиванием более высоко лежащих состояний комплекса. В этом примере очень интересны орбитальные эффекты, поскольку основным состоянием является 5, и поэтому возбужденное состояние Т2 может подмешиваться только за счет спин-орбитальных эффектов второго порядка. Таким образом, расщепление в нулевом поле относительно невелико, например порядка 0,5 см в некоторых порфириновых комплексах [c.220]

    Присутствие воды в породе (5—30%) способствует большему переходу в газовый раствор компонентов ОВ, в частности, увеличивается выход ароматических УВ, гетероатомных соединений, а также порфириновых комплексов. Опыты экстракции УВ из пород с крупным дроблением (куски 3X1,5 см) и мелким (0,15Х Х0.20 мм) показали, что в экстракцию вовлекаются битумы не только с поверхности кусков, но и из всего объема [Белецкая С. И., 1964 г.]. Это объясняется большой диффундирующей способностью газа. Все опыты показывают возможность извлечения сжатыми газами УВ, находящихся в рассеянном состоянии в материнских породах. [c.123]

    В форме порфириновых комплексов мон<ет содержаться от 5 до 50% присутствующих в нефтях ванадия и никеля [784, 785]. Вследствие летучести порфирины попадают в заметных количествах уже во фракции с начальной температурой кипения около. 300°, обусловливая тем самым присутствие в них ванадия [786]. С точки зрения нефтедобычи и нефтепереработки представляют интерес поверхностно-активные свойства порфиринов как соединений, влияющих на образование и устойчивость водонефтяных эмульсий [787, 788]. Эти свойства могут играть также определенную роль в процессе формирования состава нефтей, обеспечивая перенос металлов пз водной среды в нефтяную. По составу нефтяных порфириновых фрагментов можно судить о физико-химических условиях и процессах, протекающих при формировании нефтяных систем, кроме того, при миграции нефтей происходит направлен-пое фракционирование порфиринов вследствие неодинаковой сорбции на породах молекул различной полярности. Это позволяет использовать информацию о составе порфиринов для решения ряда задач нефтяной геологии [789—791]. [c.140]

    Накопленные к настоящему времени сведения позволяют лишь в самом общем виде систематизировать типы связей элементов с нефтяными соединениями. Материалы оригинальных работ очень редко содержат сколько-нибудь убедительные доказательства химической структуры микроэлементных соединений. Зачастую такого рода сведения базируются на аналогиях с известными классами синтетических соединений того или иного элемента, а выводы авторов о структуре нефтяных соединений носят характер предположений. До сих пор достоверно не выяснена точная химическая структура ни одного содержащего микроэлемент нефтяного вещества, за исключением порфириновых комплексов ванадил а и никеля. Заключение о типе микроэлементного соединения [c.161]

    Установлено [76], что концентрации Со, Ге, Mg, Сг, 2п и Си (но не 31, Аз) растут симбатно молекулярным массам отдельных фракций ВМС из ряда нефтей Калифорнии и Венесуэлы. Выявлены существенные различия в распределении микроэлементов между адсорбционно-хроматографическими фракциями смол из западносибирской нефти [1008], где Ге, N1 и ЗЬ оказались на 60—65% связанными с наименее полярными, а Na, Сг, Нд, Аи, Со на 46—65 и Мп на 79% — с наиболее полярными компонентами. В порфириновые комплексы в этой нефти входит не более 30% содержащегося в ней ванадия. Атомы галогенов, по меньшей мере частично, тоже входят в состав полидентатных комплексов в качестве дополнительных лигандов. [c.191]

    Одним из веществ, обнаружение которых в метеоритных образцах убедительно подтверждает гипотезу существования внеземной жизни, является порфин (рис. 20-18), а также его производные, порфирины. Порфирины представляют собой плоские молекулы, обладающие свойствами тетраден-татных хелатных групп для металлов Mg, Fe, Zn, Ni, Со, u и Ag, с которыми они образуют плоско-квадратные комплексы, показанные на рис. 20-19. Один из таких комплексов с железом, имеюпщй боковые цепи, изображен на рис. 20-20 и называется группой гема. Порфириновый комплекс магния с органической боковой цепью, показанный на рис. 20-21, представляет собой х.юрофилл. [c.253]

    Наибольшие трудности при ККФ остатков вызывают высокие коксуемость и содержание металлов, главным образом никеля и ванадия (находящихся в сырье преимущественно в виде порфириновых комплексов), а также натрия, вызывающих отравление катализатора. Никель и ванадий, а [c.106]

    Минеральная (зольная) часть привносится в нефть, главным образом, вместе с пластовыми водами в виде растворимых солей и нерастворимых веществ (песка и глины). В наименьшей степени зольная часть имеет органическое происхождение. Это металлорганические соединения (титана, ванадия, никеля и др.), происхождение которых обычно связывают с генезисом нефти, с содержанием в ней металло-порфириновых комплексов, которые являются конечным продуктом разложения хлорофилла, гемоглобина и гемина исходного материнского вещества нефтей. [c.36]


    В образовании адсорбционных слоев принимают участие вещества V с высокой поверхностной активностью, такие как нафтенаты и соеди- нения типа порфиринов. Порфирины и металл-порфириновые комплексы (остатки хлорофилла и гематина [30]) обнаружены во многих нефтях. Из металл-порфириновых соединений в нефтях наиболее [c.19]

    Если учесть, что содержание металлов в остатках больишнства нефтей в виде порфириновых комплексов обычно не превышает 25% от общего содержания металлов в остатке, то можно считать, что вклад в общую глубину удаления металлов счет порфиринового металла невелик. Обычно в условиях каталитического гидрооблагораживання наблюдается высокая степень деметаллизащш - до 90%, и более. Следовательно, наибольшему удалению подвержены непорфириновые формы металлсодержащих комплексов, включенные в поликонденсированные структуры асфальтенов и высокомолекулярных смол. Объяснение механизма и высокой скорости реакций деметаллизации, очевидно, следует искать в реакциях электронного обмена металлов с активными центрами катализатора. Не исключена вероятность активного действия в этом механизме устойчивых свободных радакалов, связанных с металлами, в частности с ванадием. [c.57]

    Интересно отметить, что основная масса ванадия сконцентрирована в асфальтенах и смолах, растворимых в спирто-бензоле, а никеля — в асфальтенах и петролейно-эфирных маслах. В исследованных нефтях ванадий -и никель-порфириновые комплексы в большом количестве концентрируются в спиртобензольных смолах, затем в асфальтенах и в значительном количестве в петролейно-эфирных маслах. [c.25]

    В ранних работах [38, 149], посвященных изучению металло-порфириновых комплексов, допускается возможность адсорбции металлов и металлопорфириновых комплексов вместе с асфальтенами и смолами на твердой поверхности минералов при перемещении нефти в пласте. Ассоциация порфиринов с асфальтенами объясняется, по-видимому, существованием прочных связей между их молекулами. В работе [198] сделано предположение, что свободные связи в молекулах ванадий-порфириновых комплексов замещены радикалами асфальтеновых структур. В результате образуются высокомолекулярные соединения сложной структуры, которые имеют практически неизвлекаемый из-за образования сложных связей ванадий. [c.26]

    Исследования экстрактов из асфальта калифорнийской нефти, -содержащих в основном никель-порфириновые комплексы, показали, что эти экстракты проявляют значительную поверхностную активность, зависящую от содержания порфиринов. [c.26]

    Анализ изотерм поверхностного натяжения бензольных растворов порфиринов на границе с дистиллированной водой (см. рис. 10) и данные, приведенные выше, позволяют предполагать, что исследованные ванадий-порфириновые комплексы, извлеченные нз нефтей, представляют собой смесь фракций, обладающих разной поверхностной активностью [108]. [c.29]

    В результате исследований соединения ванадия были разделены на 4 группы а) летучие соединения ванадия в виде ванадила (металло-порфириновый комплекс) б) летучие соединения, не являющиеся ванадилом в) нелетучие соединения ванадила г) нелетучие соединения не в виде ванадила. [c.137]

    Металлорганические соединения. Большинство исследователей считают, что металлы входят в состав комплексов порфиринового и непорфиринового характера высоко.молекулярных полициклических соединений, содержащих азот и кислород. Порфирины, содержащие металлы, предста1вляют собой сравнительно стойкие соединения, которые во время перегонки отгоняются вместе с дистиллятом, не разрушаясь. О способности перегоняться группы комплексных соединений, сопутствующих в основном асфальтено-смолистым веществам, данных нет, однако указывается, что эти соединения заносятся в дистиллят в виде капелек жидкости из-за не,аеткости фракционирования [14]. [c.24]

    Азот в асфальтенах входит в состав таких гетероциклических структур, как пиррол, пиридин, хинолин, карбозол, индол и их бензологи, сосредоточиваясь преимущественно во внутренних частях крупных полициклических структур [6,74...78] или в ароматических кольцах. Важная форма существования азота - металлоорганические комплексы порфиринового и непорфиринового типов. [c.16]

    Реакции, проводимые в более мягких условиях, дают черного цвета твердый продукт - кокс, при температуре порядка 460 °С. В коксах, полученных в данных условиях, посредством рентгеноструктурного анализа был обнаружен ванадий, связанный с некоторыми гетероатомами таким образом, в этом случае ванадийсодержащие комплексы полностью не разрушаются. В процессе ТДАДМ в твердом остатке (коксе) скапливается примерно 90% всего ванадия, содержащегося в сырой нефти. Условия этого процесса (I = 425-430 °С х 1-1,5 ч) в большей степени позволяют сохранить ванадийсодержащие комплексы порфиринового и непорфиринового типа. [c.84]

    Одной из наиболее важных форм являются металлорганические комплексы порфиринового и непорфприпового типа (реликтовые составляющие), которые показаны ниже  [c.469]

    Трейбс (Treibs) [152, 141, 142] выделил из некоторых нефтей и асфальтов порфирины и идентифицировал их. В общем его результаты оказались правильны, хотя некоторые его методы и структурные идентификации требуют проверки [153]. Скиннер провел ряд спектроскопических исследований [144] соединений ванадия из калифорнийской нефти Санта Мария и пришел к выводу, что они являются порфириновыми комплексами. [c.47]

    Электронные спектры достаточно сконцентрированных, узких смесей ГАС иногда могут служить основой для количественного анализа. Это хорошо иллюстрируется методикой определения соотношения концентраций нефтяных этио- и дезоксофиллоэри-троэтио-порфириновых ванадильных комплексов в их смеси по относительным интенсивностям полос поглощения при /- 570 (а-полоса) и - 530 ( -полоса) нм [209]. [c.27]

    Как отмечалось, в нефтях порфирины встречаются в виде комплексов 165, 792- -795] с никелем и ванадилом. Наряду с этим сообщалось также о нахождении следов железопорфиринов [794, 7981. Надежных сведений о наличии в нефти комплексов других металлов или свободных порфиринов не имеется. Некоторые авторы склонны считать доказательством присутствия безметальных порфиринов слабое поглощение в электронных спектрах порфириновых фрагментов в области 630 нм [799], однако его с большим основанием можно отнести к поглощению ванадиловых комплек- [c.142]

    Исторически первые методы выделения порфиринов из нефти, до сих пор применяемые, основаны на обработке нефти сильными кислотами с целью деметаллирования находящихся в ней металлопорфириновых комплексов и перевода свободных порфириновых оснований в кислотную фазу. В качестве деметаллирующих агентов обычно используются уксусная кислота, насыщенная бромис- тым водородом [44], метансульфокислота [814], фосфорная кислота [815] или серная кислота [46]. Однако при использовании этого метода выделения происходит разрушение значительной части порфиринов (выход 20—60%) и, кроме того, становится невозможным раздельное исследование никелевых и ванадиловых комплексов. [c.144]

    Остальные нелетучие соединения ванадия концентрируются в асфальтосмолистой части нефтер [961—965], главным образом в асфальтенах. К этой группе соединений, видимо, можно отнести и ванадилпорфирины, химически связанные с асфальтенами и не отделяющиеся от них при гель-хроматографии [821, 965]. Такие ассоцпаты имеют молекулярную массу от 2000 до 20 ООО и более и, вероятно, представляют собой продукты конденсации порфиринов с асфальтосмолистыми компонентами органического вещества осадочных пород. Нефтяные соединения ванадия, не являющиеся чисто порфириновыми структурами, могут быть отнесены по типу связывания металла к псевдопорфиринам, хелатам или комплексам с несколькими лигандами [902]. Но все же наибольшее количество непорфиринового ванадия связано, очевидно, в комплексы с асфальтеновыми структурами нефтей [893]. [c.177]

    Общпе закономерности состава порфириновых фрагментов нефтей исследовали как на деметаллированном материале, так и отдельно на ванадиловых п никелевых комплексах. Лучше изучен состав ванадиловых (УОП) комплексов, как наиболее широко представленного в нефтях класса, ио есть все основания полагать, что состав и структура никельпорфиринов подчиняются в основном тем же закономерностям [828, 829]. [c.148]

    Недавно предложен метод определения открытых положений в ископаемых порфиринах, основанный на реакции электрофиль-ного замещения пиррольных атомов водорода в молекулах порфиринов на атомы брома [833]. На синтетических ванадилпорфириновых комплексах показано, что реакция проходит исчерпывающе и достаточно селективно. По разработанной методике проведено бромирование порфириновых концентратов нефтей Западной Сибири и Южного Узбекистана. Состав продуктов [357] селективного бромирования установлен методом фракционной разгонки в масс-спектрометре по полному ионному току. При этом установлено, что молекулы ванадилпорфиринов нефтей содержат от одного да трех открытых положений на пиррольных кольцах, причем относительное содержание таких соединений достигает 70% общего количества нефтяных ванадилпорфиринов и меняется для ра лич-ных нефтей. Распределение порфиринов, содержащих одно и два незамещенных пиррольных положения в молекуле, для гомологов ряда М одной из нефтей Западной Сибири приведено на рис. 5.2. Несколько неожиданным оказалось, что пиррольные протоны характерны нё только для низкомолекулярных ванадилпорфиринов. [c.151]

    И совершенно иной, присущей только асфальтенам тип связывания имеется в том случае, если микроэлемент зафиксирован на полисопряженной, включающей гетероатомы конденсированной системе. К сожалению, в литературе нет прямых данных о количестве микроэлементов в асфальтенах, связанных по тому и другому типу. Однако тот факт, что смолы, обладая почти тем же гетероатомным составом (но 3, О, N), что и асфальтены, содержат, как правило, в 5—10 раз меньше микроэлементов 908], свидетельствует о весьма значительной роли полициклоароматических сопряженных систем в связывании металлов. Такой же вывод можно сделать и на основании изучения распределения микроэлементов по фракциям асфальтенов различного молекулярного веса [76]. Показано, что концентрация большинства микроэлементов возрастает с повышением молекулярной массы, а следовательно, и возможности реализации более развитых сопряженных конденспрованных систем. Исключение составляют лишь часть ванадия, никель и сурьма [76], причем первые два элемента концентрируются во фракциях с молекулярной массой, близкой к массе соответствующих порфириновых комплексов, а сурьма преобладает в низкомолекулярной части. [c.169]

    В спектрах ЭПР нефтяных асфальтенов обнаруживается группа сигналов, присущая комплексам четырехвалентного иона (I = 7/2) [919]. Из других парамагнитных ионов в асфальтенах бптумоидов зафиксирована двухвалентная медь (Си , I = 3/2), которая находится, вероятно, в виде порфиринового (хлоринового) комплекса в окружении четырех эквивалентных атомов азота [252]. [c.170]

    Никель появляется во фракциях с температурой кипения около 300° и его распределение подчиняется тем же закономерностям, что и распределение железа [786, 959]. Кобальт при перегонке нефти целиком концентрируется в остатке (500°) [786, 880]. При разделении нефти на компоненты кобальт полностью попадает в асфальтены, главным образом в их высокомолекулярную часть (4000— 8000 и 8000—22 000 по данным гель-хроматографии) [76]. Видимо, он связан в комплексы с тетрадентатными лигандами. Распределение железа и никеля по молекулярно-весовым фракциям носит бимодальный характер. Природа низкомолекулярных соединений никеля достаточно изучена они представлены комплексами с порфиринами. При возрастании молекулярной массы фракции растет доля непорфириновых соединений никеля. По своей природе они, по-видимому, аналогичны непорфириновым соединениям ванадия [8, 76]. Для высокомолекулярных соединений железа также справедливо то, что сказано о непорфириновом ванадии. Природа низкомолекулярных соединений железа в нефти до сих пор не ясна. Наличие нафтенатов железа исключается [926, 927, 973], но допускается возможность существования железо-порфириновых комплексов, аналогичных найденным в сланцах [390, 794, 798]. Предполагается также существование кобальт-порфиринов в концентрациях ниже предела обнаружения. Это может объяснить присутствие небольшого количества кобальта в низкомолекулярных фракциях смол и асфальтенов (300—1000) [76]. [c.179]

    Несколько образцов советских нефтей было подвергнуто спектральному анализу [27], результаты которого подтвердили содержание метал-лопорфириновых комплексов ванадия и никеля. Из исследованных 15 образцов нефтей и битумов только в 6 образцах не было обнаружено порфириновых комплексов. [c.30]

    Спектрофотометрический анализ осадка, выделенного нами ультрацентрифугированием ромашкинской нефти, также показал присутствие порфириновых комплексов ванадия. [c.30]

    П. Я. Деменковой [49] установлено, что высоким содержанием ванадия отличаются высокоасфальтеновые и высокосернистые нефти девонских отложений. Причем, ванадий и никель практически полностью связаны с асфальтосмолистыми веществами. Концентрация ванадия и никеля в смолах на порядок ниже, чем G асфальтенах. Более 50% ванадия и никеля сосредоточено в асфальтенах. Низкомолекулярные смолы и масла практически не содержат ванадия и никеля. Е. А. Глебовская и М. В. Волькенш-тейн [38] установили присутствие в нефтяных битумах ванадий- и никель-порфириновых комплексов. Природный ванадиевый комплекс имеет сложное ядро, содержащее замещенные СООН-груп-пы, сосредоточены в основном в асфальтосмолистой части. Анализ химических свойств никельного комплекса позволил авторам установить его нейтральный характер. [c.26]

    Мархасин И. Л., Гусманова Г. М. Адсорбция ванадий-порфириновых комплексов нефти.— В кн. О результатах научных исследований в областм разработки, добычи, транспорта и переработки нефти и газа в Башкирии. Уфа, Баш. НТО НТП, 1975, с. 30—36. [c.206]

    Мархасин И. Л., Гусманова Г. М. О порфириновых комплексах нефти.—В кн. Проблемы нефтепереработки и нефтехимии. Уфа, Баш. НТО НГП, [c.207]

    О характере и строении соединений, в которые входят металлы, определенных сведений не имеется. Однако больщинство исследователей считают, что металлы входят в состав порфириновых комплексов и комплексов непорфиринового характера — высокомолекулярных полициклических соединений, содержащих азот и кислород [192, 193]. Сообщается [192], что в наиболее богатых ванадием нефтяных 3—10% его содержится в виде ванадиево-пор-фириновых комплексов. Ряд данных показывает, что ванадиево-порфириновые комплексы нефти содержат ванадий в виде ванадила V0 +. Однако не весь ванадий в виде ванадила имеет форму порфиринового комплекса. Большая часть ванадия находится в виде азотсодержащих комплексов. В газойлях 30—50% ванадия содержится в виде ванадила и порфирина. [c.137]


Смотреть страницы где упоминается термин Комплекс порфириновый: [c.43]    [c.203]    [c.203]    [c.16]    [c.16]    [c.17]    [c.165]    [c.63]    [c.114]   
Химия привитых поверхностных соединений (2003) -- [ c.162 ]




ПОИСК







© 2025 chem21.info Реклама на сайте