Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура молекулярная также тип

    Таким образом, в дальнейшем преимущественно будут рассматриваться колебательные уровни энергии. Представление об уровнях колебательной энергии многоатомных молекул может быть получено на основании изучения инфракрасных спектров и спектров комбинационного рассеяния, позволяющих получать данные о колебательных частотах. Определение молекулярной структуры, а также расчеты термодинамических величин вьшолняются при помощи этих частот ьа основании соответствующих теоретических представлений. [c.294]


    Числовые индексы молекулярных графов, называются топологическими индексами [66]. Для использования топологических индексов в качестве кода структуры, а также для исследования корреляций структура—активность катализатора множество элементов молекулярного графа разбивается на классы эквивалентности. Разбиение структуры на классы эквивалентности позволяет оценивать меру ее структурного разнообразия, или структурную неоднородность. Для представления структуры в виде топологических индексов рассмотрим некоторые определения [66]. Маршрутом длины /с в графе С от вершины и до вершины называется последовательность вершин их, М2,. . ., для которой ребро щ, щ+х) и (С) при г = 1, 2,, . /с маршрут замкнут, если Пх = ил+1 в противном случае маршрут открыт. Цепь — это открытый маршрут, в котором все вершины различны. [c.99]

    На этом примере видно преимущество электронных спектров в ИК-спектрах неполярная молекула 1а и ей подобные неактивны, здесь же удается исследовать их диссоциацию, а также определить из колебательно-вращательной структуры молекулярные постоянные (Од, Ге и др. [c.168]

    Процессы адгезии играют значительную роль в технологии получения текстильных и композиционных материалов, битуминозных материалов для дорожного строительства, новых клеев и т.д. Существующие термодинамические теории адгезии основаны на результатах исследований энергии межфазного поверхностного натяжения, краевых углов на границе субстрат - адгезив , а также смачивания и растекания адгезива на межфазных границах с учетом вязкости и различного вклада межмолекулярных сил [1-3]. При этом недостаточно учитывается структура молекулярных растворов полимеров и их отклонения от идеальных. [c.111]

    Узлы молекулярной решетки образованы молекулами. Молекулярную решетку имеют, например, твердый водород, кислород, азот, галогены, благородные газы, диоксид углерода, а также многие органические вещества. Структуру молекулярных кристаллов, образованных [c.136]

    При исследовании процессов вытяжки и ориентации [6.8] некоторых полимеров, в частности ПММА, также было доказано наличие молекулярной сетки, образованной вторичными поперечными связями, концентрация которых увеличивается с понижением температуры. Вторичные поперечные связи являются временными узлами сетки и сравнительно легко распадаются и восстанавливаются в процессе теплового движения. Скольжение сегментов при деформации полимеров сопровождается разрывом и восстановлением вторичных (физических) узлов сетки. Линейные полимеры в отличие от сшитых имеют менее прочную молекулярную сетку, образованную физическими узлами различной природы. Поэтому при малых напряжениях они могут вести себя подобно сшитым (сеточным). Механизм вязкого течения полимеров нельзя рассматривать без учета их надмолекулярной структуры, а также представлений о существовании пространственной сетки в полимерах. [c.167]


    Системы с коагуляционными структурами обладают, как правило, небольшой прочностью, известной пластичностью, а также некоторой эластичностью. Эластические свойства коагуляционных структур, согласно П. А. Ребиндеру, можно объяснить изменением энтропии системы в результате переориентации образующих систему структурных элементов, сопутствующей изменению ее формы. Такими структурными элементами служат отдельные коллоидные частицы (в отличие от высокомолекулярных соединений где эластическая деформация связана с изменением взаимной ориентации звеньев молекулярных цепей). Системы с коагуляционными структурами проявляют также ползучесть, т. е. способность при течении к медленному развитию значительных остаточных деформаций практически без заметного разрушения пространственной сетки. Ползучесть системы определяется высокой, хотя и вполне доступной измерению вязкостью в области весьма малых скоростей течения. Только при больших скоростях течения в таких системах происходит значительное разрушение структуры, так как связи мекду частицами не успевают восстанавливаться и скорость разрушения становится больше скорости восстановления. [c.320]

    Химическая модификация полимеров методом хлорирования является важным промышленным способом направленного изменения их свойств и широко используется в настоящее время. При хлорировании могут быть получены продукты с разнообразными свойствами огнестойкостью, газонепроницаемостью, свето-, тепло- и химической стойкостью, адгезией к поверхностям различной природы, хорошей вулканизуемостью. Эти свойства зависят от состава, структуры, молекулярной массы полимера, метода и глубины хлорирования, а также от распределения атомов хлора в макроцепях. [c.46]

    Имеется чрезвычайно большое количество эмпирических данных, свидетельствующих о том, что многие свойства, особенно в сопряженных 7г-электронных системах, являются в первую очередь следствиями схемы связности атомов в молекуле, а более тонкие количественные характеристики молекулярной геометрии играют лишь второстепенную роль. На этом основано большинство применений теории графов для изучения молекулярной структуры, а также использование таких простых физических моделей, как теория молекулярных орбиталей Хюккеля . Это также побудило нас рассмотреть применение топологических понятий к анализу молекулярной структуры. [c.11]

    Мы будем использовать одноэлектронные эффективные гамильтонианы Л в качестве квантово-электронного отображения молекулярных структур (нами также осуществлено распространение теории на случай полного Л -электронного гамильтониана). Ковариантной формой А (Л) является [c.77]

    Пиролизные остатки характеризуются следующим. На первой стадии преобладает ассоциация, диссоциация же развивается в меньшей степени. Термическое разложение каменноугольного высокотемпературного пека идет в общем так же, как. и нефтяных остатков, но выход кокса больше, что, по-видимому, объясняется большей уплотненностью молекулярной структуры, а также, возможно, большим содержанием кислорода. [c.95]

    А [18 ], т.е. уплотнением молекулярной структуры и накоплением более прочных межатомных связей. В связи с этим следовало бы ожидать снижения КРС нефтяных коксов с повышением ТТО. Однако реакционная способность углерода определяется не только молекулярной структурой, но также его пористой структурой, концентрацией и родом примесей [12]. [c.49]

    Факторы, которые определяют образование и устойчивость пен, до конца не ясны. Поскольку пенообразование связано с громадным увеличением площади поверхности, важное значение, очевидно, имеет снижение поверхностного натяжения путем добавления ПАВ. Однако снижение поверхностного натяжения не является единственным определяющим фактором. По-видимому, молекулярная структура ПАВ также играет существенную роль. Согласно одной теории анионы ориентированы перпендикулярно к поверхности пленки, а катионы распределены в растворе между стенками пузырька. Таким образом, эти стенки несут электростатический заряд, и отталкивание зарядов мешает слиянию пузырьков. В связи с отсутствием фундаментальной теории пенообразующие агенты должны оцениваться опытным путем (см. главу 3). [c.285]

    Граничные слои с измененной структурой образуют также и неполярные, простые жидкости, в том числе со сферически симметричными молекулами. Однако толщина таких граничных слоев не превышает нескольких молекулярных слоев и отличия структуры, как показывают расчеты методами Монте-Карло и молекулярной динамики, проявляются в резких осцилляциях плотности [97—109]. Этот зффект, однако, в отличие от рассмотренных выше случаев проявляется лишь на микроскопическом уровне и связан с конечным размером молекул. Значения плотности осциллируют с периодом, близким к диаметру молекул о, моделируемых твердыми сферами, и с амплитудой, затухающей по мере удаления от твердой стенки. Для двухатомных (не сферических) молекул осцилляции выражены слабее, что связано с большим разнообразием вариантов расположения молекул в граничных с поверхностью слоях [106]. [c.213]


    С 1960-х годов и особенно в 80-е годы для проведений фундаментальных исследований по растительным белкам вер больше используются специфические антитела. Иммунохимические методы использовались при изучении белков с различными функциональными свойствами, таких, как ферменты, изо-ферментные компоненты, ингибиторы протеаз, лектины, запасные белки. Эти методы применялись при решении задач идентификации белков, определения их содержания, очистки, локализации в тканях, клетках и клеточных структурах, а также энзиматической регуляции. Они использовались в исследованиях по физиологии, патологии, биохимии, генетике и молекулярной биологии растений. Очень многие работы в этой области нашли отражение во множестве обзорных статей [12, 21—23, 26, 29, 35, 50, 57, 79, 83, 96]. [c.112]

    Гидролиз белков с известной или неизвестной структурой позволил также уточнить специфичность действия ряда таких ферментов. Эта информация дает возможность контролировать степень гидролиза, а также характер получаемых пептидов, т. е. их среднюю молекулярную массу, характер аминокислот по расположению карбоксильных или аминных групп и т. п. Например, было опубликовано исследование [61] активности а-химотрипсина в отношении соевого белка. [c.599]

    Установлена определенная закономерность между специфичностью каталитического действия и типом кристаллической структуры твердых тел. Каталитической активностью ионного и электронного типов обладают твердые тела соответственно с ионной и металлической кристаллической структурой, а также кристаллы промежуточного (ионно-металлического) типа. Молекулярные и ковалентные кристаллы в отношении катализа практически инертны. [c.424]

    Как известно, молекулы полимеров представляют собой цепочки различной длины, каждая из которых содержит ряд мономерных звеньев. При этом, естественно, движение одной части полимерной цепи влияет на перемещение других ее частей. Поэтому невозможно описать процессы, происходящие в полимерах при течении, без знания их молекулярного строения и структуры, а также механизма течения. В настоящее время хорошо известно, что реологические свойства полимеров зависят от их молекулярной массы, молекулярномассового распределения, степени разветвленности молекул. Считается, что первым результатом сдвига является разрушение межмолекулярного взаимодействия, которое возникает вследствие взаимодействия цепей. В свою очередь взаимодействие цепей есть функ- [c.26]

    Последний пример иллюстрирует преимущество электронных спектров перед колебательно-вращатель-ными. Как уже говорилось, в обычных инфракрасных колебательно-вращательных спектрах неполярные молекулы типа /а неактивны, здесь же удается исследовать их диссоциацию, а также определить из тонкой колебательно-вращательной структуры молекулярные постоянные Vo, Гд, I и т. д. Электронные спектры позволяют также обнаружить свободные радикалы и другие промежуточные продукты сложных газовых реакций. [c.223]

    Большинство / -глюкозидаз из различных продуцентов имеют четвертичную структуру, а также содержат углеводную часть. Многие из выделенных ферментов имеют значительное число множественных форм, различающихся по молекулярной массе и другим физико-химическим параметрам [2, 4, 6]. В работе [86] были выделены две формы / -глюкозидазы (молекулярные массы 67 и 75-90 кДа), которые могли ассоциировать с образованием димера. Сообщается о выделении из одного источника / -глюкозидаз с молекулярной массой 135 кДа и двумя активными центрами и с молекулярной массой 90 кДа и одним активным центром. Оче- [c.69]

    Величина ККМ — важная коллоидно-химическая характеристика ПАВ. Она связана с олеофильно-гидрофильным балансом молекул ПАВ, характеризует их склонность к образованию мицеллярных структур и в известной степени служит мерой олеофильности этих структур. Величина ККМ зависит как от особенностей молекулярного строения ПАВ, так и от внешних факторов — температуры, давления, присутствия в растворе электролитов, полярных и неполярных органических веществ и т. д. Закономерности влияния различных факторов на ККМ и свойства мицелл представляют интерес и с точки зрения развития теории мицеллообразования, и в практическом отношении, поскольку их изучение открывает возможности регулирования коллоидных свойств растворов ПАВ путем направленного изменения их молекулярной структуры, а также за счет различных добавок. [c.58]

    Молекулы парообразного фосфорного ангидрида (Р40 ц) при конденсации дают молекулярную структуру, состоящую также из каркасов Р401в. Одним словом, сходство P40 o и N205 чисто формальное, зависящее от принадлежности к одной группе одинаковая формальная ступень окисления не дает основания говорить о внутреннем сходстве строения этих веществ. [c.278]

    Твердые элементарные вещества удобно классифицировать по выше рассмотренным типам связи. Установлено, что элементы Н, Не, Ы, О, Р, N6, С1, Аг, Вг, Кг, I, Хе, Rп образуют молекулярные решетки [7, 18], состоящие из одноатомных (замороженные благородные газы) или двухатомных молекул (сМ. рис. 19). Структуры замороженных инертных газов мономорфны, плотно упакованы (решетка гелия — гексагональная, всех остальных — кубическая гранецентрированная). Мономорфной структурой обладают также твердый водород (гексагональная плотноупакован-ная), фтор 2, хлор (тетрагональная), бром, иод (ромбическая гранецентрированная). Твердый азот — двуморфен (а-На—кубическая, р-Ыа — гексагональная плотноупа кованная решетка), кислород — триморфен (а-Оа — ромбическая центрированная, Р-Оа—ромбоэдрическая элементарная, -у-Оа — гексагональная решетка). [c.59]

    По второму из указанных направлений в качестве объекта были выбраны парацетамол, глицин и пироксикам. Исследованы условия кристаллизации различных полиморфных модификаций, их взаимных твердофазных превращений, уточнены кристаллические структуры, исследовано влияние гидростатического давления на структуры, а также изучена механическая активация, как чистых образцов, так и молекулярных кристаллов в смеси с различными органическими и неорганическими подложками. [c.39]

    Некоторые свойства сетчатых полимеров (например, эластические) определяются помимо конфигурационной структуры сетки также ее топологическими ограничениями, связанными со взаимной непроницаемостью полимерных ценей. Эти ограничения могут существенно влиять на конформационный набор сетчатых полимеров. Поэтому в некоторых случаях необходимо различать топологические изомеры, простейший пример которых приведен на рис. 1.6. Соединения, молекулы которых, кроме химических, связаны также топологическими связями, носят название катенанов и хорошо известны в органической химии [И, 12]. Подобные тонологические зацепления возникают только при рассмотрении молекулярных графов, помещенных в трехмерное пространство. Такую пространственную топологию следует отличать от топологии графа, определяемой его гомеоморфизмами [13]. За термином топология ниже мы оставим только его графовый смысл, поскольку рассмотрение пространственной топологической изомерии выходит за рамки настоящего обзора. Это связано с тем, что в большей его части рассматриваются только равновесные процессы получения разветвленных [c.154]

    Если перекрывание двух атомных орбиталей происходит вдоль их главных осей, то возникающую при этом связываю-ш,ую молекулярную орбиталь называют а-орбиталью, а обра зующуюся связь — соответственно о-связью а-Молекуля,риая орбиталь и находящиеся на ней электроны локализованы симметрично относительно линии, соединяющей ядра атомов, участвующих в образовании связи. Так, например, при образовании связей с атомами водорода в метане четыре гибридных 5р -атомных орбиталей атома углерода перекрываются с 15-атомными орбиталями четырех атомов водорода, образуя четыре идентичных прочных а-связи под углами 109°28 (тетраэдрический угол). Сходная, строго симметричная тетраэдрическая структура возникает также при образовании ССЦ. В случае же СН2С12 структура будет уже несколько отличаться от полностью симметричной, хотя в целом она останется тетраэдрической два объемистых атома хлора будут занимать несколько большую часть пространства, чем атомы водорода, и углы между связями Н—С—Н и С1—С—С будут несколько отличаться от величины 109" 28 и один от другого. .  [c.22]

    Таким образом, отмеченные вьш1е изменения КРС и других физикохимических свойств нефтяных коксов в зависимости от ТТО следует рассматривать как результат комплексного влияния изменений их молекулярной и дисперсной структур, а также концентрации и состояния содержащихся в них примесей, которые в свою очередь определяются качеством сырья и технологией его подготовки и коксования и темпе-- 1 ратурой термообработки. [c.51]

    Влия1ше поверхностно-активных веществ иа мехаипчеокие характеристики битумов связано, очевидно, с изменением структуры битумов, причиной которого может являться изменение химического состава битумов под влиянием введенных веществ или физико-химическое воздействие небольших добавок на имеющуюся в битуме структуру, а также создание в битуме дополнительной структуры самой добавки. Для решения этих вопросов изучено влияние поверхностно-активных веществ на химический состав битумов и исследована структура железных солей высоко.молекулярных карбоновых кислот, оказывающих структурообразующее влияние на битум. [c.215]

    С открытием стереоспецифической полимеризации иропилена стало ясно, что высокопрочные волокна можно вырабатывать и из изотактических полиолефинов, в которых не образуется водородных мостиков и не имеется полярных групп. Однако обязательным условием, предопределяющим возможность формования волокна из таких полимеров, является наличие у них совершенной линейной и регулярной молекулярной структуры, а также сравнительно высокого молекулярного веса. Вследствие высокой регулярности пространственной структуры изотактические полимеры имеют более плотную упаковку макромолекул, чем атактические, благодаря чему создаются предпосылки для возникновения трехмерной периодической повторяемости мономерных единиц (кристалличности), [c.229]

    Первичная структура синтетич. М. предопределяет (вместе с молекулярно-массовым распределением, т. к. реальные синтетич. полимеры состоят из М. разной длины) способность полимеров кристаллизоваться, быть каучуками, волокнами, стеклами и т. п., проявлять ионо- или электронообменные св-ва, быть хемомех. системами (т.е. обладать способностью перерабатывать хим. энергию в механическую и наоборот). С первичной структурой связана также способность М. к образованию вторичных структур (см ниже). В биополимерах, состоящих из строго идентичных М., этм структуры достигают высокой степени совершенства и специфичности, предопределяя способность, напр., белков быть ферментами, переносчиками кислорода и т.п. [c.636]

    К расчету функций g(m) и к(т) для различных моделей разветвленной макромолекулы обращались многие авторы. В ранних работах [101, 102] использованы модели, предполагающие в среднем равномерное распределение узлов ветвления в макромолекуле (рис. 7.7, д). Практически это возможно лишь при одновременном возникновении всех ветвей в молекуле, что мало соответствует реакциям радикальной полимеризации. Однако простота аналитических выражений искомых функций, их проработка для разных типов разветвленных структур, а также хрестоматийность этих работ, позволяющая исследователям легко находить общий язык, до сих пор обеспечивает этим работам широкое применение при анализе экспериментальных данных. Результаты работ [101, 102], полученные для монодисперсного по молекулярной массе хаотически разветвленного полимера, были распространены [103] на полидис-персный полимер с ММР, описываемым функцией Шульца. Полученные результаты могут быть использованы при анализе ДЦР фракций ПЭВД, практически всегда обладающих некоторой полидисперсностью. [c.124]

    Под названием гемоглобин объединяют многие виды белка, осуществляющего перенос кислорода. Гемоглобин имеет молекулярный вес порядка 64000, каждая его молекула содержит четыре группы гема, четыре атома железа и при насыщении связывает четыре молекулы кислорода. Миоглобин — это белок, который служит как депо кислорода. Он выделен из мышц. Его молекулярный вес равен 16000, каждая молекула содержит одну группу гема, один атом железа и при насыщении связывает одну молекулу кислорода. Миоглобин был первым белком, для которого была установлена детальная молекулярная структура (методом дифракции рентгеновских лучей, Кендрю, 1959 г.). Молекулярная структура гемоглобина также найдена с помощью этого метода. В действительности гемоглобин представляет собой тетрамер, все четыре составляющие которого имеют молекулярный вес порядка 16000 каждая и очень сходны с миоглобином как по аминокислотному составу, так и по пространственной конформации. [c.231]

    Г. Унгар и Н. Масик [399] предположили, что уменьшение расщепления (величина Ау) полос, соответствующих колебаниям мепи-леновых СН2-групп, может быть обусловлено, по данным ИК- и рамановской спектроскопии (рис. 17 и 18 соответственно), уменьшением межмолекулярного взаимодействия вследствие расширения кристаллической структуры, а также изменением угла молекулярного зигзага в плоскости цепи и нарушением ориентационных связей дальнего порядка. Они пришли к заключению, что в ротационной фазе Ы отсутствует дальний порядок, а ближний порядок, вероятно, есть и проявляется в пределах доменов, каждый из которых включает примерно 20-30 молекул, причем усредненная молекула имеет симметрию ттт, и для нее [c.80]

    Наиболее ценным свойством ультрафиолетовых спектров алкилфенолов является тот признак, что при наличии пара-заместителя наблюдается больший батохромный сдвиг максимума поглощения. При наличии в орто-положении комплексообразующего центра (ОСН3, СООН, OOR, I, Вг, I) длинноволновый компонент колебательной структуры полосы также расположен выше 280 нм. Несомненный интерес для спектрально-структурных корреляций представляют УФ-спектры ионизированных молекул. Проведен корреляционный анализ констант ионизации алкилфенолов, найденных на основании УФ-спектров нейтральных и ионизированных молекул. Полученные корреляционные уравнения К,—о и физико-химические зависимости, соответствующие определенным молекулярным структурам фенолов, приведены в главе 5. [c.21]

    Исследования металлорганических комплексов с установленной структурой, а также промежуточных соединений и переходных состояний этого типа проливают новый свет на возможные механизмы гетерогенных реакций, катализируемых переходными металлами, их сплавами и оксидами многие пз подобных процессов имеют большое значение в промышленности. Взаимосвязь гомогенных и гетерогенных каталитических процессов кратко рассмотрена в работах [1, 29]. В настояи1,ес время очевидно, что определяющим фактором в обоих процессах является наличие координационно ненасыщенных металлов нли активных поверхностных центров. При этом в случае как чистых, так и нанесенных па нейтральную поверхность металлов илн их оксидов, обладающих каталитической активностью, соседние атомы металла, кислорода и (или) инертного носителя следует рассматривать как лиганды, ассоциированные с атомом металла, ведущего каталитический процесс. Как и атомные или молекулярные лиганды, присоединенные к атому металла гомогенного комплекса, поверхностные лиганды долж- [c.242]

    Наиболее трудной проблемой, с которой постоянно приходится сталкиваться в органической химии, является выделение исследуемых соединений в возможно более чистом виде и определение их молекулярной структуры. Решение этой проблемы является, как правило, необходимым этапом на пути к конечной и главной цели химика-органика — к синтезу веществ с заданной структурой и заданными свойствами. Задача оказывается особенно трудной в тех случаях (весьма характерных для современной органической химии), когда исследуемые вещества обладают сложным строением и незначительные детали структуры их молекул, включая взаимное пространственное расположение функциональных групп, оказывают сзоцественное, а иногда и определяющее влияние на свойства этих веществ. Успех исследователя зависит при этом от того, насколько подходящими окажутся выбранные им методы выделения, идентификации и установления химической структуры, а также насколько умело он использует имеющиеся в его распоряжении физические приборы. [c.13]

    В биологии естественно возникает финалистическая трактовка изучаемых явлений. Развитие зйготы во взрослый организм можно описывать, пользуясь понятием цели целью развития является создание организма. Его структура целесообразна, она соответствует условиям существования. Уже на ранней стадии эмбриогенеза определенные группы клеток предназначены для развития в определенный орган, и этим задается их функциональность на всех уровнях вплоть до молекулярного. Также описывается и филогенез — эволюционное развитие. Оно направлено в сторону наибольшей приспособленности популяции— элементарной эволюционирующей системы — к внешним условиям. [c.18]

    Электроотрицательный атом азота способствует индуктивной поляризации молекулы пиридина в результате смещения электронной плотности преимущественно по ст-связям. Кроме того, атом азота определяет стабильность поляризованных канонических структур, в которых он отрицательно заряжен — структуры 8, 9 и 10. Эти структуры вместе со структурами 6 и 7, которые полностью аналогичны формулам Кекуле бензола, вносят вклад в строение молекулы пиридина. Полязированные канонические структуры подразумевают также постоянно присутствующую в молекуле пиридина поляризацию системы я-электронов (при рассмотрении с позиций более строгого метода молекулярных орбиталей это связано с относительным различием в орбитальных коэффициентах ВЗМО и НСМО). [c.18]

    Дополнительно к роду и числу атомов молекулярная формула дает показатель ненасыщенности по водороду. Показатель водородной ненасыщенности представляет собой число пар водородных атомов, которые должны быть удалены из насыщенной формулы (например, СпНгп+г для алканов), чтобы получить молекулярную формулу интересующего соединения. Показатель водородной ненасыщенности может быть также назван числом мест (или степеней) ненасыщенности . Эта формулировка неудовлетворительна, так как водородная ненасыщен-ность может быть обусловлена циклической структурой, а также кратными связями. Таким образом, рассматриваемый показатель является суммой числа циклов, числа двойных связей и удвоенного числа тройных связей. [c.41]


Смотреть страницы где упоминается термин Структура молекулярная также тип: [c.24]    [c.175]    [c.70]    [c.488]    [c.100]    [c.25]    [c.469]    [c.218]    [c.149]   
Сочинения Теоретические и экспериментальные работы по химии Том 1 (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Структура молекулярная



© 2025 chem21.info Реклама на сайте