Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степень масел

    К автомобильным маслам предъявляются довольно разнообразные требования, причем эти требования отличаются большой жесткостью. Само собой разумеется, что условия работы в двигателе самолета отличаются от условий работы молоковоза в то же время, поскольку автотранспортом пользуется большое количество людей, какие-либо аварии в системе смазки совершенно недопустимы. Масло для двигателей внутреннего сгорания должно удовлетворять следующим требованиям 1) смазывать и охлаждать двигатель, 2) не вытекать из двигателя, 3) состав масла не должен изменяться, 4) предохранять смазываемые поверхности. Для того чтобы охарактеризовать, в какой степени масло отвечает [c.490]


    Чистоты степень Масла смазочные и присадки Растворение испытуемого масла или присадки в бензине Бр-1, фильтрование раствора через мембранные (нитроцеллюлозные) фильтры определение степени чистоты по числу фильтраций и массе осадков, задерживаемых фильтрами 12275—66 [c.57]

    Образование новых молекул в результате сочетания двух или большего числа молекул углеводородов и образование ароматических структур в результате дегидрирования способствуют появлению в битуме более жестких структур — асфальтенов. Эти новые полициклические ароматические компоненты изменяют первоначальную коллоидную структуру битума. Смолы и в меньшей степени масла превращаются при окислении сернистым ангидридом в асфальтены. Величина отношения асфальтены/смолы возрастает, и асфальтены коагулируют — битум переходит из золя в гель. Сера за счет еще невыясненного механизма во время реакции внедряется в углеводородные структуры, что важно для повышения твердости. После завершения реакции кислород сернистого ангидрида в окисленном продукте не обнаруживается он удаляется в виде реакционной воды. Это, пожалуй, самое убедительное свидетельство того, что термин окисление здесь неуместен, а скорее — дегидроконденсация насыщенной и полу-насыщенной (нафтено-ароматической) частей сырья. [c.137]

    При термодеструкции менее конденсированного полукокса (С/Н = 2,2) идет отщепление периферийных структурных блоков, что способствует развитию преимущественно мезопористой структуры. При термодеструкции полукокса с более конденсированной (С/Н = 2,4) и упорядоченной структурой, сформированного в значительной степени маслами и смолами, по-видимому, отщепление структурных блоков проходит в значительно меньшей степени, а газообразных продуктов — водорода и алканов С1-С4 — образуется больше. Поэтому большее развитие получает микропористая структура. Следовательно, соотношение мезо- и микропор, а также распределение последних можно целенаправленно регулировать подбором сырья для полукоксования. Наибольшим объемом микропор (до 0,21 см /см ) обладают образцы из полукокса асфальтита с минимальным содержанием асфальтенов, а наибольшим объемом мезопор (до 0,20 см /см ) — образцы из полукокса асфальтита с максимальным содержанием асфальтенов. Адсорбенты имеют значительное содержание гетероатомов (до 10-12 масс. %), что обусловливает высокую полярность поверхности. [c.592]

    Работа этим способом проводится с неподвижным железным катализатором п с отводом тепла реакции через вмонтированный внутрь печи охладитель. Поддержание необходимой температуры регулируется давлением пара в охлаждающем агрегате. Выход продукта составляет 185 г на 1 смеси СО/Нг, включая фракцию Сз. Это соответствует выходу около 90% от теоретического. Здесь также содержание олефинов исключительно высокое и (что особенно важно при использовании их в химическом направлении) олефины очень равномерно распределены но всем фракциям. Их содержится около 75% во фракции Сд и 62% во фракции С . В среднем у 70% олефинов двойная связь находится у конца молекулы. Степень разветвленности углеводородной смеси, кипящей в интервале кипения среднего масла, составляет около 25%. [c.32]


    Соединение друг с другом большого числа олефиновых молекул в зависимости от степени полимеризации приводит к образованию маслообразных или твердых полимеров. Маслообразные полимеры получают, например, при обработке олефинов, особенно этилена, а также более высокомолекуляр- ных олефинов, безводным хлористым алюминием. При этом получают полимер, являющийся превосходным смазочным маслом. Этот процесс также не относится к области нефтехимической нромышленности и здесь пе рассматривается. [c.222]

    Степень разветвленности более легких продуктов невелика, но растет с ростом молекулярного веса. Углеводороды в интервале кипения среднего масла в среднем содержат 25% углеводородов изостроения. [c.128]

    С повышением степени хлорирования когазина вязкость смазочного масла возрастает, вязкостно-температурная характеристика ухудшается и коксуемость по Конрадсону увеличивается. Чем больше длина цепи парафинового компонента, тем лучше вязкостно-температурная характеристика и тем больше выход масла для получения масла с одинаковой абсолютной вязкостью степень хлорирования когазина можно уменьшить. Изучение влияния соотношения количества нафталина и хлорированного когазина показало, что с увеличением относительного количества нафталина выход смазочного масла возрастает. [c.239]

    Как сообщалось раньше, конденсаторное масло получают вместе с водным конденсатом его количество зависит от температуры и продолжительности процесса, а также в большей степени от состава исходного сырья. Парафины с менее длинной цепью и сильно разветвленные углеводороды дают больше маслянистого конденсата. [c.470]

    Индекс вязкости является относительной величиной, показываю щей степень изменения вязкости масла в зависимости от температурь т. е. характеризует пологость температурной кривой вязкости масла. Он определяется при помощи двух серий эталонных масел. Эталонные масла первой серии имеют очень пологую температурную кривую вязкости, и их индекс вязкости условно принят за 100,единиц. Эталонные масла второй серии имеют очень крутую температурную кривую вязкости, и их индекс вязкости принят за нуль. Масла одной и той же серии отличаются друг от друга только величиной вязкости. Определение индекса вязкости основано на сравнении испытуемого масла с двумя эталонными маслами двух серий, имеющими при 98,8° С вязкость, одинаковую с вязкостью испытуемого масла.  [c.155]

    Коррозионные свойства масел оцениваются по ГОСТ 5162—49 (метод Ю. А. Пинкевича). Прибор для определения коррозионных свойств масел (рис. 91) состоит из масляной бани 6, стеклянных пробирок 5, в каждую из которых заливают до 80 мл испытуемого масла, и механизма 2, обеспечивающего попеременное погружение свинцовых пластинок 4 стандартного размера в пробирки с маслом нагретым до 140° С, и извлечение их оттуда. Пластинка погружается 15 раз в минуту, продолжительность испытания 50 ч. Степень корро-166 [c.166]

Рис. 1.2. Возможные варианты строения молекул нефти и смазочных масел Совершенствование базовых масел проводится по двум основным направлениям. При первом, масло очищается только до такой степени, чтобы в нем осталось оптимальное содержание смол, кислот, соединений серы, азота и, дополнительно, вводятся присадки для улучшения некоторых функциональных свойств. Такой метод не позволяет получать масла достаточно высокого уровня качества, требуемого для современных двигателей. При втором, базовое масло полностью очищается от всех примесей и проводится молекулярная модификация методом гидрообработки (гидрокрекинга, гидроочистки и др.). В результате получается масло, обладающее ценными свойствами для тяжелых режимов работы (высокая стойкость к деформациям сдвига при высоких скоростях, нагрузках и температурах, с высоким индексом вязкости и стабильностью физико-химических параметров). Рис. 1.2. <a href="/info/27323">Возможные варианты</a> <a href="/info/4829">строения молекул</a> нефти и смазочных масел Совершенствование базовых масел проводится по двум <a href="/info/150784">основным направлениям</a>. При первом, масло очищается только до такой степени, чтобы в нем <a href="/info/901648">осталось оптимальное</a> <a href="/info/35885">содержание смол</a>, кислот, <a href="/info/25451">соединений серы</a>, азота и, дополнительно, <a href="/info/470724">вводятся присадки</a> для улучшения <a href="/info/1463351">некоторых функциональных</a> свойств. <a href="/info/1867145">Такой метод</a> не позволяет <a href="/info/653239">получать масла</a> достаточно высокого уровня качества, требуемого для современных двигателей. При втором, <a href="/info/395870">базовое масло</a> полностью очищается от всех примесей и <a href="/info/31682">проводится молекулярная</a> <a href="/info/139040">модификация методом</a> гидрообработки (гидрокрекинга, гидроочистки и др.). В <a href="/info/840804">результате получается</a> масло, обладающее ценными свойствами для тяжелых режимов работы (<a href="/info/1000673">высокая стойкость</a> к <a href="/info/8722">деформациям сдвига</a> при <a href="/info/304474">высоких скоростях</a>, нагрузках и температурах, с <a href="/info/1768876">высоким индексом вязкости</a> и стабильностью <a href="/info/2792">физико-химических</a> параметров).
    Химические методы анализа более широко применяются при анализе работающего масла для идентификации и определения количества продуктов окисления и загрязнения. Например, по результатам определения количества металлов делаются выводы о процессах износа деталей двигателя, по содержанию карбонильных групп (ИК спектроскопия) -о степени окисления масла и ресурсе работы. [c.41]

    Наиболее часто моделируется трение скольжения на небольшой поверхности. В ходе испытания постепенно повышается нагрузка и/или скорость скольжения (деформация сдвига) и измеряется или регистрируется сила трения и ее изменение, а также износ поверхностей трения. Из полученных данных рассчитываются критические параметры - критическая нагрузка, нагрузка сваривания, нагрузочная способность масла, показатель степени износа, показатель скорости износа и др. [c.54]


    Влияние увеличения мощности и форсирования двигателя. Противоокислительные и моющие свойства масла особенно важны при форсировании двигателей. Бензиновые двигатели форсируются путем увеличения степени сжатия и частоты вращения коленчатого вала, а дизельные - увеличением эффективного давления (в основном при помощи турбонаддува) и частоты вращения коленчатого вала. При увеличении частоты вращения коленчатого вала на 100 оборотов в минуту или при повышении эффективного давления на 0,03 Мпа, температура поршня увеличивается на 3°С. При форсировании двигателей обычно уменьшают их массу, что приводит к увеличению механических и тепловых нагрузок на детали. [c.66]

    Вязкость масла - это основной показатель качества, который является общим для всех масел. Для двигателя или любого другого механизма необходимо применять масла с оптимальной вязкостью, величина которой зависит от конструкции, режима работы и степени износа, температуры окружающей среды и других факторов. [c.69]

    Таким образом степень вязкости SAE помогает определить диапазон температуры окружающей среды, при котором масло обеспечит нормальную работу двигателя - его проворачивание стартером, прокачивание масла насосом по смазочной системе при холодном пуске и надежное смазывание летом при длительной работе в режиме максимальных скоростей и нагрузок. [c.71]

    Производители масел часто приводят сравнение легкости запуска двигателя и скорости достижения маслом удаленных точек смазывания при разных степенях вязкости применяемых масел. Подобные аргументы позволяют убедить потребителей в необходимости применения новых высококачественных продуктов с улучшенными низкотемпературными свойствами (рис. 3.2). [c.71]

    Рисунок 3.2 наглядно показывает, что масла зимнего ряда с более низкой степенью низкотемпературной вязкости (SAE 5W...... SAE 10W...) выгодно применять для облегчения запуска двигателя и существенного снижения его износа, поскольку в первые секунды работы двигателя, при недостаточном поступлении масла к удаленным точкам смазывания, проявляется наиболее сильное изнашивание. [c.71]

    При выборе степени вязкости моторного масла, следует руководствоваться рекомендациями производителя конкретного двигателя. Эти рекомендации основываются на конструктивных особенностях двигателя - степень нагрузок на масло, гидродинамическое сопротивление масляной системы, производительность масляного насоса, максимальные температуры масла в различных зонах двигателя в зависимости от температуры окружающей среды (особенности систем охлаждения). Рекомендации производителей автомобилей по применению моторных масел, в зависимости от температуры окружающей среды, приведены в Приложении В. [c.73]

    Комбинированные олифы и олифы О к с о л ь — продукты, полученные путем окисления высыхающих и полувысыхающих масел первые содержат 30%, вторые — 45% растворителя. Комбинированные олифы главным образом применяются как полуфабрикат для изготовления масляных красок. В некоторых литературных источниках комбинированными олифами ошибочно называют смеси препарированного растительного масла с синтетическими олифами или нефтеполимерными смолами. В действительности же комбинирование заключается не в этом. Для получения олиф с определенным комплексом свойств в зависимости от их применения (для наружных или внутренних работ, для изготовления красок и т. д.) используют комбинации различных природных масел, например льняного и подсолнечного, или комбинации масел, прошедших различную предварительную обработку — окисленного до определенной степени масла с прогретым. [c.21]

    Каждая из указанных особенностей двигателей и условий их эксплуатации выдвигает определенные требования к качеству смазочных масел. Так, чем выше тепловая напряженность двигателей, тем в большей степени масла должны обладать свойством не вызывать пригорания поршневых колец и не давать повышенных углеродистых отлосжений на деталях. Наличие в двигателях подшипников, например, из свинцовистой бронзы выдвигает требование, чтобы применяемые масла были достаточно устойчивы против окисления и не вызывали коррозии (разъедания) вкладышей. Для обеспечения легкого запуска двигателей необходимо, чтобы масла при низких температурах обладали хорошей текучестью. [c.20]

    Принимать слабительные чересчур часто опасно. Если это входит в привычку, без них становится уже трудно обойтись. А кроме того, маслянистые слабительные могут вызвать авитаминоз. Витамин А и витамин О, как и некоторые другие, растворимы в жирах. Если стенки кишечника покрыты маслом, эти жирорастворимые витамины остаются в масляной пленке и не попадают в организм сквозь стенку кишечника. И если долгое время принимать слабительные, то организм может ошушать нехватку этих витаминов, даже если в пище их достаточно. Этого можно до некоторой степени избежать, если принимать слабительные не перед едой или после нее, а на кючь. [c.176]

    Т1ие исключительных по качеству смазочных масел. В качестве парафинового компонента они применяли в первую очередь когазин [20] и нашли, что с увеличением степени хлорировапности когазина вязкость смазочного масла растет, вязкостно-температурные свойства ухудшаются, коксовое число увеличивается. Чем длиннее цепь парафинового компонента, тем лучше вязкостно-температурные свойства и тем больше выход масла. Они нашли далее, что выход масла тем больше, чем выше в реакции отношение нафталина к хлорированному компоненту. [c.123]

    При применении нафталина в качестве исходного ароматического компонента для получения смазочного масла, по вязкости равноценного-получаемому на основе ксилола, можно применять хлоркогазин со значительно меньшей степенью хлорирования. [c.238]

    Как будет показано ниже, уже простым воздействием хлористого алюминия на хлорированный когазин можно получить смазочные масла, обладающие хорошими характеристиками. При рассмотренном пыше процессе алкилирования нафталина протекают две параллельные и взаимно-конкурирующие реакции, а именно образование смазочного масла в результате собственно алкилирования и образование смазочного масла из одного лишь хлорированного когазина, вероятно, через стадию дегидрохлорироваиия с последующей полимеризацией образующихся олефинов в присутствии хлористого алюминия. Выход смазочного масла оказывается тем больше, чем больше нафталиновых остатков оно содержит. Характеристики смазочного масла в весьма слабой степени зависят от соотношения нафталин хлорированный когазин (см. табл. 84). [c.239]

    Исходя из этого предположения и знал молекулярный вес углеводорода, можно вычислить содержание в непрореагировавшем углеводороде хлористого алкила и непрореагировавшего исходного углеводорода. В результате многочисленных анализов было установлено, что при сульфохлорировании особенно высокомолекулярных парафинов из всего. количества хлора, найденного в углеродной цепи, окол о 50% находится в виде хлорсульфохлорида и примерно столько же в виде хлористого алкила. Это справедливо при условии, что сульфохлорирование велось до небольшой степени превращения исходного углеводорода. Если же реакция заметно перешагнула за стадию моносульфохлорида, то содержание хлора в углеродной цепи нейтрального масла растет с увеличением степени превращения. [c.376]

    Если чистые индивидуальные парафиновые углеводороды, как м-додекан, тетрадекан, гексадекан, октадекан или 10—20°-ные фракции когазина II, подвергнуть сульфохлорированию до примерно 50%-ной степени превращения (полусульфохлорирование), полученные полу-сульфохлориды омылить разбавленным раствором едкого натра, отде- пить нейтральное масло от раствора соли сульф.окислоты, а остаток масла извлечь пентаном, то после выпаривания и сушки получают соли сульфокислот в твердом состоянии. Такие соли сульфокислот полностью очищены от нейтрального масла (нейтральное масло сильно ухудшает капиллярно-активные свойства). Их можно с успехом применять для систематического исследования зависимости капиллярной активности [c.410]

    Тем не менее в известных случаях, например, при использовании в качестве исходного материала для сульфохлорирования узких углеводородных фракций и при ведении процесса лишь до небольших степеней сульфохлорирования, чтобы избежать образования ди- и полисульфохлоридов и после отделения нейтрального масла, могут быть получены моносульфохлориды, пригодные для получения определенных специальных продуктов. [c.427]

    Фракционный состав топлива оказывает влияние на степень его распыления, полноту сгорания, дымность выхлопа, нагароот-ложенпе и разжижение картерного масла. При высоком содержании легких фракций увеличивается давление сгорания. Утяжеленное топливо хуже распыляется вследствие повышения поверхностного натяжения топлива. [c.38]

    Смолы образуют истинные растворы в маслах и топливных дне гиллятах, а асфальтены в ТНО находятся в коллоидном состоя — НИИ. Растворителем для асфальтенов в нефтях являются ароматические углеводороды и смолы. Благодаря межмолекулярным взаи — мо/ ействиям асфальтены могут образовывать ассоциаты — надмо — лек/лярные структуры. На степень их ассоциации сильно влияет среда. Так, при низких концентрациях в бензоле и нафталине (менее [c.77]

    На завершающих стадиях диспергирования наряду с увеличением степени дискретизации внутренней фазы дисперсии в значительной мере начинают сказываться процессы ее укрзш-нения — агрегирования. Именно на этих стадиях начинается заметная в эксперименте (с учетом ошибок определения) периодическая изменчивость распределения частиц внутренней фазы по размерам (симбатно — по их количеству). Это неоднократно наблюдалось в разнообразных суспензиях (диоксид титана в парфюмерном масле, гербицидная композиция, металлический нафий в кумоле и др.) (рис. 3.5). [c.127]

    Щелочность и кислотность масел alkalinity, a idity). Очищенное минеральное масло, как правило, является химически нейтральным. Для нейтрализации кислот, образующихся во время работы при сгорании сернистого дизельного топлива или окисления углеводородных молекул масла, в моторные и трансмиссионные масла добавляют щелочные присадки. Обычно эту задачу выполняют моющие и диспергирующие присадки - детергенты (поверхностно-активные вещества). Чем больще щелочность масла, тем больще его рабочий ресурс. Поэтому для моторных и трансмиссионных масел в качестве эксплуатационного показателя указывается общее щелочное число TBN. В некоторые индустриальные масла (охлаждающие смазочные жидкости и др.) добавляют активные сернистые присадки, которые имеют слабую кислотную реакцию. В связи с этим, в качестве показателя химических свойств, указывается общее кислотное число TAN. Этот показатель иногда определяется и при анализе работающего или отработанного масла как показатель степени окисления масла и накопления кислых продуктов сгорания топлива. [c.39]

    Химический состав масла ( hemi al onstitution of oil). Качество масла, в значительной степени, зависит от его группового химического состава, т.е. от соотношения парафинов, ароматических соединений и нафтенов. При оценке качества масла и присвоении категории качества, химический состав масла не определяется, так как многие свойства масла существенно улучшаются введением соответствующих присадок. Иногда, в описаниях масла производители указывают основной класс соединений, так как они характеризуют некоторые общие эксплуатационные свойства. Например, парафиновые масла отличаются высоким индексом вязкости, хорошей стойкостью к окислению, а нафтеновые масла - высокой липкостью, хорошими смазывающими свойствами и т.д. [c.41]

    Ряды степеней вязкости масла. Вязкость является основным показателем качества масла. Для конкретного назначения требуется масло определенной вязкости. Для облегчения выбора масла необходимой вязкости, составлены так называемые ряды вязкости, в которых через установленный шаг изложены фиксированные значения вязкости масла. Эти фиксированные значения вязкости масла называются степенями вязкости (vis osity grades). [c.47]

    Характер изменения степени износа от нагрузки показывает противоизносные свойства масла или смазки при постоянной нагрузке, которая ниже критической. В ходе испытания периодически измеряется диаметр пятен износа на нижних шарах и рассчитывается среднее значение износа (в мм). Зависимость износа (D) от нагрузки (Р) характеризуется кривой износа (рис. 2.11). Интенсивность износа от начала и до сваривания зависит от способности смазочного материала уменьшать износ и характеризуется индексом задира (нагрузки) load wear index - LWT). В начальном интервале нагрузки износ поверхностей трения происходит в условиях граничного трения и является пропорциональным нагрузке. В этом режиме соотношение между нагрузкой и соответствующим ей износом является постоянной величиной и может характеризовать противоизносные свойства масла или смазки. Индекс нафузки выражается в ньютонах. [c.55]


Смотреть страницы где упоминается термин Степень масел: [c.600]    [c.235]    [c.488]    [c.237]    [c.237]    [c.145]    [c.169]    [c.203]    [c.11]    [c.28]    [c.45]    [c.54]    [c.69]    [c.69]   
Химия и технология плёнкообразующих веществ (1981) -- [ c.385 ]




ПОИСК







© 2024 chem21.info Реклама на сайте