Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Точные методы измерения масс

    Гравиметрией называют метод количественного анализа, заключающийся в точном измерении массы определяемого компонента пробы, выделенного в виде соединения известного состава или в форме элемента. (Классическое название — весовой анализ.) Гравиметрический анализ основан на законе сохранения массы веществ при химических превращениях. Это наиболее точный из химических методов анализа, его характеристики предел обнаружения — 0,10% правильность — 0,2 отн.% информативность— 17 бит. В гравиметрии используют реакции обмена, замещения, разложения и комплексообразования (табл. 7.6), а также электрохимические процессы. [c.139]


    Пикнометрический метод. Этот метод — один из самых точных методов определения плотности. Второе его достоинство — малый объем образца, требуемого для определения (от 1 до 20 мл). Метод основан на измерении отношения массы определенного объема топлива к массе воды, взятой в том же объеме и при той же температуре. Точность его может быть доведена до 0,0001. Единственный недостаток метода — сравнительно большая длительность определения. [c.9]

    Более точным методом определения объема ионита является пикнометрический, основанный на измерении плотностей ионита в сухом и набухшем состоянии. Для этой цели в пикнометр вместимостью 10—20 см помещают пикнометрическую жидкость с известной плотностью и определяют вместимость пикнометра при выбранной температуре где — масса пикно- [c.693]

    Гравиметрическим анализом называют метод количественного химического анализа, основанный на точном измерении массы определяемого компонента пробы, выделенного либо в элементарном виде, либо в виде соединения определенного состава. Гравиметрические методы подразделяют на две группы 1) методы отгонки. 2) методы осаждения. [c.65]

    В тех случаях, когда необходимо провести точные измерения плотности сырой нефти или нефти, содержащей большое количество парафинов или легколетучих фракций, рекомендуется пикнометрический метод измерения плотности. Сущность метода вытекает из определения плотности р = M/V, которое требует измерений вместимости V пикнометра до метки и массы М жидкости, наполняющей пикнометр в этом объеме. Определение [c.245]

    Метод измерения масс с использованием масс-спектрометра с простой фокусировкой в основном аналогичен методу Нира масса неизвестного иона сравнивается с массой иона известного состава путем изменения ускоряющего напряжения при постоянном магнитном поле измеряются два напряжения, при которых появляются соответствующие пики. Однако в приборах с простой фокусировкой наиболее точные измерения должны быть ограничены молекулярными ионами, которые образуются в ионизационной камере без значительной кинетической энергии. Поскольку в масс-спектрометрах секторного типа нет фокусировки по скоростям, то ионы с начальной кинетической энергией, входящие в анализатор, будут двигаться по кривой большего радиуса, чем такие же ионы, но не обладающие кинетической энергией, и, следовательно, первые будут регистрироваться, как имеющие большую массу. [c.55]


    Точные методы измерения масс [c.43]

    Все вычисления в количественном анализе делятся на точные и приближенные. При точных расчетах для получения окончательного результата анализа следует помнить, что точность результата определяется точностью метода, точностью мерной посуды, тщательностью измерений. Точность окончательного результата не может быть повышена путем арифметических действий над результатами измерений. Например, пофешность аккуратных определений титриметрическими методами анализа обычно колеблется в пределах 0,1 - п- 0,1% (отн.) Поэтому при точных экспериментальных измерениях масс на аналитических весах и объемов по бюреткам результаты прямых измерений должны содержать по четыре значащие цифры. Следовательно, все используемые в последующих расчетах величины и конечный результат также должны содержать четыре значащие цифры. Например, правильно записанная концентрация должна содержать четыре значащие цифры правильно 0,2021 моль-л, но не 0,202 и не 0,20214 правильно записанный результат вычислений массы т = = 0,1545 г, но не 0,154 и не 0,15454 г. [c.90]

    На явлении ядерного магнитного резонанса [235, 1275, 1636, 1650, 1651] основан чрезвычайно точный метод измерения магнитных полей, используемых в масс-спектроскопии применения этого метода описаны многими авторами [156, 159, 160, 282, 429, 494, 507,523, 1234, 1632, 1834, 2015]. Измерение сводится к определению резонансной частоты, и точность составляет обычно л-10" %. Так, Леонтьев добился точности 6-10 %, а Томас — 2,5-10 %. Однако в процессе развертки массы нельзя определять с такой точностью, так как измеряемое поле не является эффективным для ионного пучка в масс-спектрометре, как указывалось ранее. [c.60]

    В приложении 3 приведен перечень встречающихся в природе стабильных и долгоживущих радиоактивных изотопов, наиболее современные данные для точных значений масс изотопов и результаты масс-спектрометрических измерений, а также некоторые данные, полученные другими методами. Так, например, масса Не определена при помощи Q-величины. В этом случае дается ссылка на используемый метод. В цитируемой литературе не использованы ранние работы. Поскольку в таблицах приведены только массы, то не представлялось возможным рассматривать работы, включающие измерения дублетов, если авторы не использовали свои результаты для установления масс атомов [425, 743, 944,1060,1329,1484,1519,1533,1647,1707,1879,1882, 1910]. Имеются обзоры методов измерения масс [44, 535, 536, 584, 989, 1240, 1241, 1252, 1332, 1333, 2121, 2122], включающих ранние масс-спектрометрические определения, а также определения другими методами. [c.62]

    Вычисления палеотемператур по отношениям распространенностей изотопов были проведены рядом ученых 1581—583, 589, 1464, 1999, 2071]. Масс-спектрометрический метод, вероятно, является наиболее точным методом измерения палеотемператур, однако необходимо помнить, что его использование ограничено легкими элементами и низкими величинами температур. [c.104]

    В этой главе рассматриваются вопросы учета сырой нефти при ее дальнейшей транспортировке, не затрагивая вопросов измерения дебита нефтяных скважин. Под сырой нефтью будем подразумевать любую нефть (жидкость), полученную после сепарации, без всякого ограничения содержания каких-либо примесей (воды, солей, механических примесей и т.д.) и перекачиваемую на установки подготовки нефти. Эта жидкость представляет собой сложную смесь нефти, растворенного газа, пластовой воды, содержащей, в свою очередь, различные соли, парафина, церезина и других веществ, механических примесей, сернистых соединений. При недостаточном качестве сепарации в жидкости может содержаться свободный газ в виде пузырьков - так называемый окклюдированный газ. Все эти компоненты могут образовывать сложные дисперсные системы, структура и свойства которых могут быть самыми разнообразными и, самое главное, не постоянными в движении и времени. Например, структура и вязкость водонефтяной эмульсии могут изменяться в широких пределах в процессе движения по трубам, в зависимости от скорости, температуры, давления и других факторов. Всё это создаёт очень большие трудности при учете сырой нефти, особенно при использовании средств измерений, на показания которых влияют свойства жидкости, например, турбинных счетчиков. Особенно большое влияние оказывают структура потока, вязкость жидкости и содержание свободного газа. Частицы воды и других примесей могут образовывать сложную пространственную решетку, которая в процессе движения может разрушаться и снова восстанавливаться. Поэтому водонефтяные эмульсии часто проявляют свойства неньютоновских жидкостей. Измерение вязкости таких жидкостей в потоке представляет большие трудности из-за отсутствия методов измерения и поточных вискозиметров. Измерения, проводимые с помощью лабораторных приборов, не дают истинного значения вязкости, так как вязкость отобранной пробы жидкости отличается от вязкости в условиях трубопровода из-за разгазирования пробы и изменения условий измерения. Содержание свободного газа зависит от условий сепарации и свойств жидкости. Газ, находясь в жидкости в виде пузырьков, изменяет показание объемных счетчиков на такую долю, какую долю сам составляет в жидкости, то есть если объем газа в жидкости составляет 2 %, то показание счетчика повысится на 2 %. Точно учесть содержание свободного газа при определении объема и массы нефти очень трудно по.двум причинам. Во-первых, содержание свободного газа непостоянно и может изменяться в зависимости от условий сепарации (расхода жидкости, вязкости, уровня в сепараторах и т.д.). Во-вторых, технические средства для непрерывного измерения содержания газа в потоке в настоящее время отсутствуют. Имеющиеся средства, например, устройство для определения свободного газа УОСГ-ЮОМ, позволяют производить измерения только периодически и дают не очень достоверные результаты. Единственным способом борьбы с влиянием свободного газа является улучшение сепарации жидкости, чтобы исключить свободный газ или свести его к минимуму. Для уменьшения влияния газа УУН необходимо устанавливать на выкиде насосов. При этом объем газа уменьшается за счет сжатия. [c.28]


    Величина, пропорциональная полному ионному току, выходящему из ионизационной камеры, может быть измерена для этой цели используется часть ионного пучка до прохождения им магнитного поля. Измерения такого рода могут быть проведены на приборах с двойной фокусировкой и особенно важны в тех случаях, когда не представляется возможным другим методом измерить количество образца, вводимого в прибор. Измерение полной ионизации приобрело в последнее время особое значение для анализа углеводородов. При работе с высокомолекулярными соединениями обычно вводят постоянный объем жидких углеводородов в прибор, и для получения полной ионизации относят его к такому же объему стандартного вещества С16 или С24. При этом ошибка анализа составляет 5—10%. Однако было найдено, что поскольку плотность различных углеводородов, особенно высокомолекулярных, изменяется незначительно, полная интенсивность ионного тока непосредственно измеряется объемом жидкого образца, вводимого в масс-спектрометр, безотносительно к молекулярному весу или типу углеводородов. Таким образом, полная ионизация может быть использована в качестве более точного метода стандартизации масс-спектров, чем, например , метод, основанный на измерении объема жидкого образца [406, 973]. [c.247]

    Для того чтобы перейти от геометрического объема к внутреннему объему-вместимости был применен метод измерения массы воды, вытесненной объемом твердого тела. Этот метод занимал одно аз важных мест в метрологии, так как точным взвешиванием воды пытались установить возможно более точное соотношение между единицами массы и кубическими мерами объема. Вода, которой пользовались при этом, была дважды дистиллирована, не имела в себе растворенного воздуха учитывались все поправки на температуру, атмосферное давление и др. [c.389]

    Методы измерения скорости выгорания кокса с поверхности катализаторов, основанные на принципе непосредственного взвешивания проб, предпочтительнее, так как оии позволяют учитывать массу водорода, входящего в состав кокса и выгорающего при окислении. Однако весы типа Вестфаля— Мора, использованные на установке ГрозНИИ, недостаточно точны. Применение [c.172]

    Следовательно, ошибка результата гравиметрического определения становится небольшой при малых ошибках измерений и больших, значениях измеряемых величин. Нижний предел ошибки измерения определяется типом используемых аналитических весов. Увеличение измеряемой величины целесообразно только в определенной степени, когда вследствие этого не выявляются другие недостатки, например увеличение затрат времени на фильтрование и промывание. Как правило, масса весовой формы не должна существенно превышать 200 мг. Масса исходной навески должна быть примерно такой же. Ошибкой аналитического фактора в общем можно пренебречь. Однако сам он непосредственно влияет на ошибку, так как определяет величину наибольшей исходной навески, равной = 200 мг. Если исходная навеска и масса весовой формы являются величинами одного порядка, то большой пересчетный фактор обеспечивает уменьшение суммарной ошибки. Если же масса весовой формы значительно меньше массы исходной навески, то суммарная ошибка возрастает. При определении основных компонентов обычными гравиметрическими методами ошибка определения достигает 0,1%, при соблюдении особых мер предосторожности можно достигнуть точности до 0,01%. Поэтому гравиметрию причисляют к особо точным методам количественного анализа 130—33]. [c.62]

    Методы измерения температуры и давления уже обсуждались, поэтому рассмотрим теперь вопросы измерения массы используемого газа и объема, который он занимает. Указанные измерения основываются на тех же принципах, что и измерения при низких давлениях, но число их вариантов невелико. Обычно массу измеряют двумя методами прямым взвешиванием или определяют объем газа при низком давлении. Последний метод равноценен определению числа молей при достаточно низком давлении. Его результаты часто выражают в системе относительных единиц, обычно называемых единицами Амага. При этом объем выражается через так называемый нормальный объем, т. е. объем, занимаемый газом при нормальных давлении и температуре (обычно 0° С и 1 атм). Этот объем газа не равен точно объему того же числа молей идеального газа и не совсем одинаков для различных газов. Более подробно единицы Амага обсуждаются ниже. Если плотность жидкости известна очень точно, как, например, для высших углеводородов алифатического ряда, то ее масса может быть определена из точных измерений объема. [c.95]

    Гравиметрия (весовой анализ) — метод количественного химического анализа, заключающийся в точном измерении массы определяемого компонента пробы, выделенного в виде соединения известного состава или в элементном виде [c.438]

    Определение потенциалов появления и потенциалов ионизации органических соединений с помощью масс-спектрометра способствовало изучению энергетических состояний молекул были получены значения энергии связи, более точные по сравнению с определяемыми косвенными методами. Благодаря масс-спектрометрическим измерениям были достигнуты значительные успехи в химии свободных радикалов. [c.5]

    Массу М тела находят преим. уравновешиванием его силы тяжести Р (Р = Мд, где з-ускорение своб. падения в месте установки В.) либо момента этой силы, действующих на измерительную (подвижную) часть В., известной противодействующей, или уравновещивающей, силой (моментом). При наиб, точном компенсационном методе взвешивания уравновешивающая сила, создаваемая, напр., гирями, возвращает подвижную часть В. в исходное положение равновесия, а В. служат компаратором (сравнивающим устройством). При прямом методе измерений (масса тела принимается равной показаниям В.) противодействующая сила возникает в результате отклонения подвижной части от положения равновесия под действием силы тяжести взвешиваемого тела. Во мн. типах В. используют оба метода взвешивания напр., осн. доля силы Р уравновешивается гирями, а остальная - отклонением подвижной части В. от положения равновесия. [c.355]

    Метод ИЦР ПФ является наиб, точным масс-спектрометрич. методом измерения масс. Его используют для исследования р-ций ионных кластеров с молекулами, лазерной десорбции ионов с пов-стей твердых тел, диссоциации многоатомных ионов и др, [c.375]

    Законы Фарадея для стационарных токов абсолютно строги. На этих законах основывается очень точный метод измерения количества электричества путем измерения массы или объема реагирующего или выделяюн егося вещества (кулонометрия). Раньше с помощью законов Фарадея определяли единицу силы тока — Международный ампер — как силу неизменяю-щегося тока, который, проходя через водный раствор нитрата серебра, отлагает на катоде 1,1П800 мг серебра в секунду (в настоящее время в системе СИ дается другое определение ампера). [c.30]

    В 1961 г. Международный союз химиков вместо кислородной единицы атомных весов ввел новую шкалу атомных весов, а именно Vi2 веса легкого изотопа углерода, приняв массовое число атома этого изотопа точно равным 12. Основная причина, побудившая принять это решение, заключается в следующем. После того как был разработан весьма точный. метод измерения относительного веса положительно заряженных частиц, входящих в состав кана-ловых лучей, оказалось, что обычный кислород представляет собой смесь трех разновидностей атомов, или трех изотопов с относительными массами 16, 17 и 18. Таким образом, условно принятый химиками вес атома кислорода, равный 16, относится не к определенным атомам, а к средней массе трех изотопов кислорода. Сам по себе этот факт не создавал бы затруднений, если бы изотопный состав природного кислорода оставался постоянным независимо от того, из какого источника получен кислород. Однако оказалось, что кислород, полученный из воды, имеет несколько иное соотношение изотопов, чем кислород воздуха кислород, выделенный из мрамора, отличается по изотонпому составу от первых двух. [c.33]

    Сначала представляло интерес точное определение относительных количеств этих изотопов. Фотографический метод, использовавшийся тогда в масс-спектрографах для измерения масс изотопов, не отвечал требованиям точных определений относительных количеств изотопов, и в результате попыток преодолеть это затруднение был создан масс-спектрометр с электронной регистрацией. По мере развития работ с этим прибором стало ясно, что вещества, более слоншые, чем элементы, иоинзируются, образуя характерные заряженные осколы . Систематическая разработка этих вопросов привела I тому, что масс-спектрометрия стала изящным методом качественного и количественного анализа органических соедине-тт. [c.335]

    Первые два параметра можно найти непосредственно из значений Р (бд), вычисленных с полющью уравнения (111,22) по измеренному расширению слоя. Так как в настоящее время не существует точных методов оценки коэффициента эффективной массы, то его значение принимается равным i/j, как и для отдельной частицы. [c.90]

    Обычно во всех экспериментальных работах давление и температуру определяют непосредственно с помощью манометров и термометров, хотя не менее точные результаты измерений дают и относительные методы. Для определения молярного объема и плотности применяются самые различные методы измерения. Наиболее простым и прямым путем является определение массы газа и занимаемого им объема, по которым можно найти и = У1п и р = п1У. Непосредственное определение плотности можно также осуществить с помощью метода ядерного магнитного резонанса (ЯМР) и по результатам измерений показателя преломления. Можно использовать также относительный метод определения плотности, если имеется газ, отклонение которого от идеального газа хорошо известно. Кроме того, для определения плотности можно использовать методы, основанные на эффекте расширения газа. Из этих методов широко известны метод адиабатического расширения (метод Джоуля— Томсона) и метод последовательного изотермического расширения (метод Барнетта). [c.73]

    Гравиметрическим анализом называется метод количественного анализа, основанный на то>5ном измерении массы определяемого вещества или его составных частей, выделенных в виде соединений точно известного постоянного состава. Методы гравиметрического анализа делятся на несколько групп  [c.191]

    В табл. 1.1 приведена классификация методов аналитической хим ии. Первую группу составляют химические методы анализа, в основе которых лежит изменение энергии химической реакции. В ходе реакции изменяются параметры, связанные с расходом исходных веществ или образованием продуктов реакции. Эти изменения экспериментатор может либо наблюдать непосредственно (визуально), например появление окраски или выпадение осадка, либо измерять такие велич-ины, как расход реагента, массу образующегося продукта и т. д. Если в основе метода лежит измерение массы одного из продуктов реакции, то такой метод называют гравиметрическим.. Если определяют объем затраченного реагента с точно известной Концентрацией, то такой метод называют титри-метрическим. Титриметрические методы классифицируют по типам реакций, лежащих в их основе кислотно-основные, окислительновосстановительные, комплексообразования и осаждения (см. разд. 7.6.2). В газоволюмометрическом методе избирательно поглощают определяемый компонент газовой смеси и измеряют объем смеси до и после поглощения. Зависимость скорости химической реакции от концентраций реагирующих веществ лежит в основе кинетических методов анализа. [c.11]

    Практически не представляется возможным на основании литературных данных составить сравнительную таблицу точных значений ВЭТТ для насадок или коэффициентов полезного действия тарелок для тарельчатых колонок. Испытания эффективности про водили с самыми разнообразными эталонными смесями при самых различных условиях, В редких случаях делались указания нн условия, приведенные в главе 4,10 в качестве наиболее необходп мых. Разработка стандартного метода испытания эффективности является неотложной задачей, так как только таким путем можно будет получать сравнимые данные. Кроме того, в ряде случаев нри испытаниях применяли эталонные смеси недостаточной чистоты, а растворенная в пробе смазка кранов могла исказить результаты. По-видимому, необходимо составить новые характеристики эффективности важнейших насадочных и наиболее употребитель ных тарельчатых колонок с учетом вышеизложенного и с привлечением последних достижений науки и новейших методов анализа, например инфракрасной спектроскопии, газовой хроматографии и масс-спектрометрцческих методов измерения. [c.184]

    Им широко пользуются для различных расчетов в электрохимии. В частности, на законах Фарадея основан самый точный способ измерения количества электричества, прошедшего через цепь. Он заключается в определении массы вещества, выделившегося при электролизе на электроде. Для этого служат приборы, называемые кулонометрами. В лабораторной практике используется медный кулонометр, в котором электролизу подвергается подкисленный раствор USO4 с медными электродами. Важно, чтобы в кулонометре на электроде происходила только одна электрохимическая реакция и полученный продукт был доступен точному количественному опреде-.лению. Например, все количество электричества, прохо-.дящее через медный кулонометр, расходуется на перенос меди с анода на катод, где масса ее определяется гравиметрическим методом. [c.256]

    Относит, погрешность измерения массы в прямой Г. может достигать и 0,1 — и0,01%. Одпако при этом необходимо вносить поправку на р-римость формы осаждения, обеспечивать ее селективное выделение, предупреждать соосаж-дение др. компонентов р-ра и их сорбцию на пов-сти формы осаждения, обеспечивать количеств, перевод формы осаждения в весовую и т. п. Поэтому точный анализ методами прямой Г. сравнительно трудоемок. Методы Г. постепенно заменяют методами титриметрии, кулонометрии, атомно-абсорбц. анализа, рентгеноспектрального анализа и др. [c.142]

    Выбор метода точного В. определяется конструкцией весов и условиями В. При особо точных В. (напр., объектов массой 1-10 мкг при ультрамикроанализе) используют не только методы точного измерения массы, но и принимают во внимание погрешности гирь и шкал весов, а также воздействие внеш. условий (аэростатич. и др. сил, атм. давления и т.п.). Погрешности, вносимые накладны га гирями 1-го и 2-го классов точности, исключаются при точном В. внесением поправок, указанных в свидетельствах на наборы гирь. Погрешность В. из-за влияния аэростатич. сил возникает при неравенстве объемов объекта В. и гирь. Согласно закону Архимеда, эту погрешность можно найти по ф-ле А = 4(1/ г 1/ тХ где в, г и т-плотность соотв. воздуха, гирь (принятая при поверке) и объекта В. Напр,, при разностном В. погрешность может возникнуть вследствие изменения в за время между первым и вторым В. Для исключения упомянутой погрешности вводят поправки (что особенно необходимо, если и значительно различаются), которые обычно находят из спец. таблиц или графиков. [c.362]


Смотреть страницы где упоминается термин Точные методы измерения масс: [c.196]    [c.196]    [c.128]    [c.47]    [c.63]    [c.78]    [c.63]    [c.47]    [c.389]   
Смотреть главы в:

Масс-спектромерия и её применение в органической химии -> Точные методы измерения масс

Масс-спектрометрия и её применение в органической химии -> Точные методы измерения масс




ПОИСК





Смотрите так же термины и статьи:

Точна

точный метод



© 2025 chem21.info Реклама на сайте