Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полибутадиен, характеристик

    Для экспериментальной проверки полученных соотношений были рассчитаны спектры времен релаксации для образца блок-сополимера полистирола с полибутадиеном с содержанием полистирола 62%. Эксперименты были выполнены при различных больших деформациях [55]. Результаты расчета приведены в табл. 5.1. Видно, что при длительности релаксационного процесса 180 мин экспериментальные кривые описываются пятью временами релаксации. При этом времена п и Т2 практически не зависят от деформации е и составляют в среднем <Т1> = 12,8 с и (т2>= 1,34-10 с. Остальные времена релаксации качественно согласуются с найденными зависимостями (5.80), хотя наблюдается значительное количественное расхождение. Это объясняется принятыми при выводе этих формул допущениями и упрощением исходных дифференциальных уравнений. Таким образом, полученное решение показывает, что предложенная модель правильно передает ход экспериментальных кривых и позволяет объяснить закономерное появление спектра времен релаксации. На самом деле поведение системы может характеризоваться двумя основными временами релаксации. Остальные времена являются комбинацией этих двух основных времен и зависят от деформации и упругих характеристик полимера. [c.176]


    Проиллюстрируем теоретические выводы экспериментальными данными по сорбции паров растворителей в упруговязкие системы на примере блок-сополимеров полистирола с полибутадиеном. Эти объекты являются удобными потому, что они состоят из двух фаз — твердой и высокоэластичной — и подбором селективных растворителей можно изменять сорбционные характеристики в широких пределах. Эти же характеристики определяются и предысторией получения образцов из растворителей разного термодинамического качества [76, 80]. [c.225]

    Хотя трудно определять структурные характеристики какого-либо соединения (кроме ПВХ) в продукте реакции ПВХ с полибутадиеном, содержащем меньше 5% последнего, тем не менее в сополимерах, содержащих 5—10% полибутадиена, наличие yu -l,4-структур может быть определено с помощью метода ИК-спектроскопии. [c.244]

    Для иллюстрации зависимости фактора сдвига от частоты были вычислены значения функции lg аг(со) при различных температурах тройного блок-сополимера строения полистирол — полибутадиен — полистирол при двух частотах 10 и 10 Гц со значениями = 0,7 и — 0,3. Большинство лабораторных методов измерения механических характеристик вязкоупругих материалов укладывается в этот диапазон частот, причем верхняя область перекрывается динамическими испытаниями, а нижняя — исследованиями переходных ре жимов. [c.69]

    Примером характеристики вязкостных свойств растворов гибкоцепных полимеров, инвариантной относительно молекулярных масс и действительной в очень широком диапазоне концентраций, могут служить данные для растворов полибутадиенов узкого ММР, представленные на рис. 2.38. [c.213]

    Полибутадиен и полиизопрен исследовались в 1980-е годы в России в качестве опытных образцов присадок [132]. Было установлено, что на эффективность присадок влияют молекулярная масса полимера, его структура и скорость течения нефтепродукта. На рис, 77 представлено влияние характеристик полибутадиена и числа Рейнольдса на эффективность присадки. [c.189]

    В заключение авторы подчеркивают, что г ас-полибутадиен не испытывает деструкции под действием сдвиговых напряжений при температурах ниже 120°. Выше этой температуры имеют место термоокислительные процессы, приводящие к уменьшению молекулярного веса упомянутого полимера и улучшению его характеристик. [c.83]

    Характер развития аномалии вязкости в сильной степени зависит от микроструктуры, МВР и степени разветвленности полимерных молекул. Для полибутадиенов с одинаковой микроструктурой (около 80% г мс-1,4-звеньев), но с разными молекулярными весами это можно проследить по зависимости отношения эффективной вязкости т] к наибольшей ньютоновской от напряжения сдвига как показано на рис. 8. Обш ей закономерностью является снижение напряжения сдвига, соответствуюш его началу уменьшения вязкости, с ростом молекулярного веса исследованных полибутадиенов. Аналогичная зависимость отмечается и для полибутадиенов, содер-жаш их примерно 60% г мс-1,4-звеньев, за тем исключением, что благодаря более низким значениям начиная с которых эти полимеры проявляют аномалию вязкости, отклонение от ньютоновского режима течения для них начинается при более низких значениях напряжения, чем для полибутадиенов с высоким содержанием цис-звеньев и таким же молекулярным весом. Для достаточно высокомолекулярных полибутадиенов можно построить универсальную температурно-инвариантную характеристику вязкости т. е. [c.73]


    Характеристика живых олигомеров акрилонитрила, привитых на полибутадиен (тетрагидрофуран, 25°) [100—101] [c.51]

    Сополимерные и композиционные полиэтиленовые пленки. В настоящее время мешки из крафтбумаги, применявшиеся ранее для упаковки удобрений, химикатов, поваренной соли, сахара и т. д., начинают вытесняться мешками из полиэтиленовой пленки. При этом возрастают требования к полиэтиленовой пленке в отношении ударопрочности и прочности сварных швов. Для удовлетворения этих требований к полиэтилену добавляют в небольших количествах полиизобутилен, бутилкаучук или полибутадиен. Кроме того, этилен сополи-меризуют с винилацетатом и эфирами акриловой кислоты (не более 5 /о по весу). Такие добавки снижают кристалличность полиэтилена, повышая ударопрочность пленки. Сравнительные характеристики сополимерных и обычных пленок из полиэтилена и полипропилена приведены в табл- 3.2. [c.43]

    Окисление. Изучение реакции окисления ненасыщенных по-. жмеров (иначе называемой реакцией их старения) имеет большое практическое значение, так как позволяет определить длительность и допустимые условия эксплуатации резиновых нзде-,1ий. Поэтому исследованию реакции окисления посвящено большое количество работ. Кинетические характеристики окислительного процесса полимеров во многом зависят от скорости диффузии кислорода в толщу материала. Скорость окисления ненасыщенных полимеров на поверхности или в тонкой пленке графически изображается 5-образной кривой с ясно выраженным индукционным периодом (рис. 75). РГндукционный период тем короче, чем выше температура реакционной среды. В зависимости от структуры полимера изменяются скорость диффузии и растворимость кислорода в полимере. Соответственно изменяются кинетика окисления и степень превращения полимера под влиянием кислорода. При одинаковых условиях константа диффузии кислорода в полибутадиене в 10,5 раз больше константы диффузии кислорода в поли-диметилбутадиене. В полимерах, которым можно придать кристаллическую структуру или ориентировать их макромолекулы, [c.239]

    В 1995 году в наз чно-информационном сборнике НИИШПа Простор Куперман Ф.Е. в своем аналитическом обзоре [30] подвел своеобразный итог испытаний в шинных резинах перспективных типов отечественных высоконенасыщенных каучуков общего назначения с повышенным содержанием винильных звеньев в цепи (1,2 полибутадиен 3,4 полиизопрен бутадиен-стирольные каучуки с 1,2-звеньями в полибутадиеновой части). В монографии в этом и предьщущих разделах главы 2 уже говорилось о роли боковых групп на технические характеристики ре- [c.59]

    Каучуки — высокомолекулярные вещества, обладающие высокими эксплуатационными качествами, в частности хорошей эластичностью, водонепроницаемостью, тепло- и морозоустойчивостью, высокой стойкостью к старению. Уже свыще 100 лет каучук используют в битумных композициях для придания им эластичности, а следовательно для повыщения эксплуатационной надежности дорожных и кровельных материалов, герметиков и лаковых покрытий. Модификация битумных материалов каучуками заключается в следующем повыщается температура размягчения, уменьшается з ависи-мость пенетрации от температуры, снижается температура хрупкости, возникает способность к эластическим обр атимым деформациям, повышается жесткость и прочность битумной смеси, значительно улучшаются низкотемпературные характеристики. Для смешивания с битумом применяются чистые (неву 1канизованные) каучуки, так как они наиболее эффективно модифицируют физические свойства битумных материалов. Разнообразие видов каучуков, применяющихся для модификации битума и нашедших практическое применение, невелико. Подробно исследовано использование натурального каучука в качестве добавки к битумам в основном дорожных марок. Из синтетических каучуков наиболее часто применяют дивинилстирольный, бутадиенстирольный, поли-хлоропреновый (неопреновый) [170, 171, 172, 173, 229] и некоторые блок-сополимеы, в частности полистирол-полиизопрен— полистирол и полистирол—полибутадиен—полистирол [174, 175]. Каучукоподобные олефины полиизобутилен, сополимер изобутилена с изопреном (бутилкаучук) и сополимер этилена с пропиленом (СКЭП) также используются для совмещения с битумом [169, 176, 223]. Регенерированный каучук и отходы шин в виде крошки при совмещении с битумом дают грубые смеси, так как мало набухают в компонентах битума. Однако смеси обладают повышенными эластическими и упругими свойствами по сравнению с битумами, и поэтому указанный дешевый материал широко применяется для изготовления битУМНо-полимерных мастик [69,176]. [c.59]

    Процесс полимеризации при получении ударопрочного полистирола начинается в гомогенном растворе каучука в стироле. Ход реакции полимеризации может быть представлен фазовой диаграммой, применяемой практически для всех систем полимер- полимер — растворитель рис. 7.1). Как видно из диаграммы, при-конверсии более 1% Для системы полистирол — полибутадиен — стирол реакционная среда становится гетерогенной одна фаза представляет собой раствор полибутадиена в стироле (непрерывная фаза), другая — раствор полистирола в стироле (дискретная фаза). В полимеризующейся системе следовало бы рассматривать и третью фазу, представляющую собой привитый на каучук полистирол, распределенный на границе раздела фаз, однако какие-либо термодинамические характеристики для такой трехфазной системы в литературе не приводятся. Большинство исследователей ограничиваются рассмотрением фазовых равновесий в модельных системах без учета привитого полистирола, считая, что эти характеристики можно с достаточной точностью аппроксимировать и на реальные реакционные среды. [c.160]


    Полибутадиен-уретановый форполимер СКУ-ДФ-2 представляет собой жидкость янтарного цвета медообразной консистенции (вязкость при 25°С не более 80 Па-с). Содержание концевых — МСО-грунп в этом олигомере обычно колеблется в пределах 2,7—3,2. Концентрация диамета X (отвердителя) в метилэтилкетоне поддерживается на уровне 50 5%, но при переходе от кистевого нанесения к другим способам может быть понижена. Характеристика двухкомпонентного рабочего гуммировочного состава кистевого нанесения приведена в табл. 69. По сравнению с нолиэфир-уретановым составом на основе СКУ-ПФЛ полибутадиен-уретановый состав на основе СКУ-ДФ-2 обладает большей вязкостью и меньшей жизнеспособностью, несмотря на то, что в него не вводится катализатор отверждения. [c.165]

    Получение и свойства другого эластомера на основе циклопентена— цис-полипентенамера описаны в работах [31, 111, 6]. В отличие от ТПМ этот полимер кристаллизуется только при длительной выдержке при —75°. Его вулканизаты при комнатной температуре имеют значительно худшие физико-механические показатели, чем вулканизаты ТПМ. Однако при низких температурах цис-полипентенамер имеет наилучшие характеристики, превышающие характеристики таких морозостойких каучуков, как цис-полибутадиен и сополимер окиси пропилена с аллилглицидиловым эфиром [31]. По-видимому, при условии [c.156]

Рис. 13. Вязкоупругие характеристики полибутадиенов и их бинарных смесей (М, = = 8,5.10 Му Шп = 1,35 Ма = 3,2-10 MJMn = 1,05) Рис. 13. Вязкоупругие характеристики полибутадиенов и их бинарных смесей (М, = = 8,5.10 Му Шп = 1,35 Ма = 3,2-10 MJMn = 1,05)
    В свете сказанного большой интерес представляет моделирование полидисперсных полимеров смесями очень узких фракций. При этом, исходя из приведенной классификации высокомолекулярных соединений, желательно выяснить специфику изменения свойств их смесей, если компоненты, образующие смеси, относятся к разным классам. Учитывая особые характеристики высокомолекулярных полимеров, целесообразно основное внимание обратить на смеси, в которых молекулярный вес одного из компонентов больше 20 Ме. Естественно, что крайним случаем являются растворы высокомолекулярных полимеров в маловязких растворителях. Поэтому рассмотрим весь диапазон составов, начиная от смесей высокомолекулярных полимеров до растворов высокомолекулярных полимеров в низковязких растворителях. На рис. 15 показано влияние на начальную вязкость полибутадиена молекулярного веса 2,4-10 добавок менее вязких полибутадиенов и маловязких растворителей. Опыты проводились на вискозиметре постоянных давлений. В случае высоковязких компонентов отношение длины к диаметру капилляра составляло 22,5. Для растворов полибутадиенов в маловязких растворителях это отношение составляло не меньше 40 в опытах с разбавленными растворами оно было не менее 100. Следует отметить, что образцы полибутадиенов, у которых молекулярный вес ниже 6-10 , не были вполне однородными по молекулярным весам. В верхнем правом углу рис. 15 представлены зависимости начальной вязкости смесей и растворов от концентрации высокомолекулярного полибутадиена в левой части приведены молекулярные веса низкомолекулярных компонентов приведены также зависимости для растворов высокомолекулярного полибутадиена в дигептилфталате, а-метилнафталине и толуоле. [c.383]

    Исследована возможность получения характеристик органических полимеров посредством пиролитической ИК-спектроскоти, которая ранее широко использовалась для идентификации трудно анализируемых органических полимеров. Ряд полибутадиенов, содержащих раз.шчные количества цис-, транс- и винильных групп, подвергался разложению в температурном интервале 500— 1000°С. Основны.чи газообразными продуктами разложения были этилен, пропилен и 1,3-бутадиен, а отношение интенсивностей линий было использовано для оценки микроструктуры исходного полимера. Пиролитическая ИК-спектроскопия была также применена для анализа ряда этилен-пропи.ченовых сополимеров. При этом оказалось, что количество выделяющегося при пиролизе этилена пропорционально концентрации этилена в этилен-пропи.ченовом сополимере. [c.89]

    Малеинизированный цггс-1,4-полибутадиен известен как пленкообразователь с хорошими антикоррозионными свойствами, но с плохими механическими характеристиками. Малеинизированные 1,2-полибутадиен и сополимеры бутадиена и 1,3-пентадиена образуют твердые пленки с очень высокой водостойкостью, но низкими механическими характеристиками. [c.118]

    Следует также упомянуть метод эмульсионной полл-меризации, который обеспечивает получение пленкообразователя с высокими стабильностью в рабочем растворе, рассеивающей способностью и коррозионной стойкостью. Этот метод предусматривает применение водных растворов нейтрализованных малеинизированных масел, полибутадиенов или эпоксиэфиров в качестве эмульгатора. Эмульсионная сополимеризация бутадиена с другими мономерами проходит в мицеллах такого эмульгатора. 1,4- с-Полибутадиеновое масло, модифицированное фенольной смолой, является пленкообразующим для автомобильной грунтовки ВКЧ-0207, обладающей высокими рассеивающей способностью и коррозионной стойкостью. Однако из-за высокой ненасыщенности нленкообразователя стабильность рабочего раствора низка, а термостарение пленки протекает ускоренно, что ведет к ухудшению ее характеристик. Так, эластичность однослойного покрытия грунтовкой БКЧ-0207 уменьшается при термостарении до 1 мм по Эриксену. Старение можно замедлить, если грунтовку перекрыть другими материалами, что используется при получении комплексных автомобильных покрытий. [c.119]

    В приближении Юнга а может рассматриваться как характеристика способности полимера к смачиванию им поверхности субстрата, а -как фактор, препятствующий этому процессу вследствие сохранения первоначальной формы растекающегося тела. Поэтому между величиной а и эффективностью межфазного взаимодействия должна наблюдаться антибат-ная зависимость при условии превалирующего влияния диффузионного механизма, т. е. при отсутствии заметного активационного барьера на границе раздела фаз при адгезионном контакте. В справедливости такого вывода убеждают результаты изменения сопротивления расслаиванию адгезионных соединений трех эластомеров группы СКН (фракция с минимальным значением молекулярной массы) с полиизобутиленом-35 Н/м для СКН-18 75 Н/м для СКН-26 и 70 Н/м для СКН-40 [16]. Иными словами, по мере снижения прочности адгезионных соединений эти эластомеры располагаются в ряд, точно отвечающий теоретическому. Аналогичный вывод следует из сопоставления значений а различных полимеров с литературными величинами Ррас для адгезионных соединений полиэтилена, полиизобутилена и полиэтилентерефталата. Для полиэтилена (адгезивы-полиизопрен, полибутадиен, полиизопрен, СКС-30 и СКН-40 [516]), полиизобутилена (адгезивы-натуральный каучук, СКС-30, СКН-18, СКН-26 и СКН-40 [568] и полиэтилентерефталата (адгезивы-полиэтилен, поливинилацетат, полиизопрен, СКС-30 и СКН-40 [569]) коэффициенты [c.125]

    Свойства и важнейшие характеристики В. с. Свойства В. с. определяются химич. составом, строением, взаимным расположением макромолекул (надмолекулярной структурой) в конденсированной фазе В. с. В зависимости от этих факторов свойства В. с. могут меняться в очень широких пределах. Так, папр., полибутадиен, построенный из гибких углеродных цепей, при комнатной темн-ре представляет собой легко деформируемый эластичный материал, в то время как нолиметилметакрилат, цепи к-рого содержат сильно взаимодействующие полярные группы, при комнатных темп-рах является твердым, стеклообразным продуктом он приобретает каучукоподобные свойства лишь при темп-рах порядка 100 . Целлюлоза — полимер с очень жесткими линейными цепями, вообще пе может существовать в каучукоподобном состоянии вплоть до темп-ры ее химич. разложения. В рассмотренных примерах различия в химич. составе вызывают существенные различия в физич. свойствах В. с. Однако даже при одном и том же химич. составе в зависимости от строения больших молекул свойства В. с. могут сильно меняться. Типичным примером могут служить полимеры полиэтилена, полученные путем полимеризации при низком и высоком давлении. Т. наз. полиэтилен низкого давления, имеющий линейное строение, плавится при более высокой темп-ре, чем разветвленный полиэтилен, полученный полимеризацией при высоком давлении (соответственно 135° и 115°). Плотность и степепь кристалличности также значительно выше в случае линейного полиэтилена. Большие различия в свойствах В. с. могут наблюдаться даже в том случае, если различия в структуре макромолекул на первый взгляд и невелики. Так, изотактический полистирол, к-рый, как и атактический полистирол (см. Изотактические полимеры), постровпиа линейных цепей и отличается от последпего лишь регулярной последовательностью третичных асимметричных атомов углерода в цепи, представляет собой кристаллич. вещество с т. пл. ок, 235°, в то время как атактич. полистирол вообще не способен кристаллизоваться и размягчается при темп-ре ок. 80°. В данном случае различия в микроструктуре макромолекулярной цепи влекут за собой и различия в надмолекулярной структуре. лагодаря регулярному строению цепей изотактич. полистирола в пом могут возникать надмолекулярные образования со структурой, характерной для кристаллич. полимеров. [c.349]

    Эпоксидированные полимеры обладают высокой реакционной способностью и под действием различных реагентов могут вулканизоваться с образованием трехмерных термоактивных структур. Сшивание или вулканизация осуществляется путем взаимодействия с полифункциональпыми активными водородсодержащими соединениями, например поли аминами или двухосновными кислотами, или по реакциям поликонденсации — полимеризации в присутствии такой кислоты Льюиса, как трехфтористый бор. Двойные связи, присутствующие в эпоксидированных полибутадиенах, представляют дополнительные активные участки цепи, способные взаимодействовать с перекисями и катализаторами ионных реакций. К полимерной цепи по месту двойной связи можно привить полимеры, образующиеся из различных реакционноспособных мономеров типа стирола. Наличие двойных связей позволяет осуществлять взаимодействие эпоксидированных полимеров с другими ненасыщенными полимерами — каучуками и полиэфирами. Общая характеристика реакций эпоксидированных полибутадиенов приведена в табл. П-5. [c.149]


Смотреть страницы где упоминается термин Полибутадиен, характеристик: [c.219]    [c.196]    [c.391]    [c.60]    [c.373]    [c.438]    [c.125]    [c.82]    [c.65]    [c.173]    [c.60]    [c.359]    [c.84]    [c.22]    [c.380]    [c.373]   
Препаративные методы химии полимеров (1963) -- [ c.2 ]




ПОИСК





Смотрите так же термины и статьи:

ПоЛибутадиен



© 2025 chem21.info Реклама на сайте