Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фаянса метод определения

    Фаянса метод— в аргентометрии способ определения иодидов К1, Nal и др., которые невозможно проанализировать методом Мора, а также хлоридов и бромидов. В качестве инцикаторов используют адсорбционные индикаторы — флуоресцеин и эозин. См. также Мора метод. [c.35]

    В чем сущность определения галогенидов по методу а) Мора б) Фаянса в) Фольгарда Назвать рабочие растворы, индикаторы. Записать основные уравнения реакций. [c.84]


    Определение хлоридов по методу Фаянса [c.246]

    Из всех осадительных методов наиболее широко применяют аргентометрию. Это лучший способ определения больших количеств хлорид- и бромид-ионов, а по методу Фаянса — иодид-ионов. [c.101]

    Проведите количественное определение (метод Фаянса). [c.61]

    Метод Фаянса. О применении флуоресцеина, дихлорфлуоресцеина, эозина и некоторых других веществ в качестве адсорбционных индикаторов было сказано на стр. 303—310. Прекрасным индикатором для определения бромидов является эозин, который можно применять при титровании даже очень разбавленных растворов. [c.336]

    Работа №2 Определение содержания хлорид-ионов методом Фаянса с применением адсорбционного индикатора флуоресцеина (полумикрометод). [c.50]

    При титровании по методу Фаянса более отчетлива конечная точка титрования. Метод более точен и универсален, чем методы Мора и Фольгарда. С применением адсорбционных индикаторов сузился круг мешающих ионов, расширилась рабочая область pH растворов. Определение хлорид-ионов стало возможным в средах [c.37]

    Для определения бромида можно использовать все три метода, названные методами Фольгарда, Мора и методом абсорбционного индикатора (метод Фаянса). Методы Фольгарда и Мора, приведенные в разделе Хлориды , могут быть использованы без изменений. Для метода абсорбционного индикатора, вероятно, эозин (тетрабромфлуоресцеин) является лучшим индикатором, но флуоресцеин также подходит для проведения определения. Эозин, будучи более сильной кислотой по сравнению с флуоресцеином, позволяет проводить титрование бромида в более кислой среде (pH = 2). Кольтгоф и Берк [4] рекомендовали добавление уксусной кислоты для увеличения контрастности изменения окраски индикатора. Было изучено влияние добавок различных поверхностно-активных веществ на титрование [5]. Найдено, что гидрокси-пропилметилцеллюлоза позволяет получить самый лучший переход окраски в конечной точке титрования и в этом смысле предпочтительнее агар-агара. В этом же исследовании был сделан вывод о том, что эозин является лучшим индикатором для бромида, а флуоресцеин — для смеси галогенидов (хлорид, бромид, иодид). [c.264]

    Методы осаждения основаны на образовании осадков малорастворимых веществ при ионных реакциях обмена. Эти методы довольно широко применяются при количественном анализе фармацевтических препаратов. В фармацевтическом анализе применяются определения хлорид- и бромид-ионов в их солях по аргенто-метрическому методу Мора аргентометрическое определение бромидов, иодидов и роданидов по методу Фаянса с адсорбционным индикатором флуоресцеином аргентометрическое определение бромидов и иодидов по методу Фольгарда (обратное титрование) определение серебра в его растворимых солях по методу Мора или Фольгарда определение цианистоводородной кислоты и цианида калия по методу Мора или Фольгарда. Методы осаждения применяются также при анализе альбаргина, миндальной воды, коллоидного серебра, нитрата серебра, протаргола, пирола, бромурала. Методы осаждения применяются также для анализа меркурисали-циловой кислоты и серой ртутной мази. Методы осаждения, как и весовой анализ, основаны на теории осаждения. [c.539]


    ОПЫТ 10. ОПРЕДЕЛЕНИЕ ХЛОРИДА ПО МЕТОДУ ФАЯНСА [c.352]

    Из аргентометрических методов только метод фаянса дает при определении роданидов удовлетворительные результаты. [c.13]

    Показателем преломления (п) называется отношение скорости света в вакууме к его скорости в данном веществе. Однако обычно в качестве показателя преломления приводят отношение скорости света в воздухе к его скорости в веществе, насыщенном воздухом. Показатель преломления используется для характеристики соединений, а также для расчета других физических констант. В работе Бауэра и Фаянса [2024] рассмотрены общие вопросы, связанные с показателем преломления, а также некоторые методы его определения и ПУТИ использования. Устройство и применение некоторых рефрактометров рассмотрены в работе Рейли и Рея [1537]. [c.26]

    Для определения выделившейся при 100° и выше двуокиси углерода лучше всего использовать гравиметрический метод, который сходен с методом Фаянса [7]. Разложение а-кетокислоты, лучше всего фенилглиоксиловой кислоты, проводится в чистом азоте. Наполняют газометр азотом из баллона, очищают от кислорода, пропуская через щелочной раствор гидросульфита и слой раскаленной меди, и, наконец, пропускают через сушильную колонку с натриевой щелочью й хлористым кальцием. Реакционным сосудом служит колба из иенского стекла, которую закрывают резиновой пробкой с трубками для ввода и вывода газа. Реакционный сосуд погружают в паровую баню, которая в зависимости от требуемой температуры заполнена ксилолом (т. кип. 137—138°) или водой. Температура в течение каждого опыта поддерживается с точностью 0,1°. Для того чтобы полностью удалять выделяющуюся двуокись углерода, азот пропускают через реакционную жидкость со скоростью 2 л в час (газовый счетчик ), а затем для очистки от захваченных паров — через спиралевидную стеклянную трубку, охлаждаемую до —10° смесью льда с солью. К спирали примыкает маленькая и-образная трубка с хлористым кальцием, трехходовой кран, и, наконец, к обоим свободным концам крана присоединено по две и-образных трубки, наполненных обычным способом увлажненной натриевой щелочью и с наружного конца слоем хлористого кальция. [c.164]

    Метод Фаянса (титрование с адсорбционными индикаторами). В процессе титрования поверхность осадка имеет некоторый заряд (см. 1фавила адсорбции в разд. 9.1.5). Например, при титровании галогенид-ионов раствором нитрата серебра осадок Ag l до ТЭ заряжен отрицательно вследствие адсорбции собственных СГ -ионов. После ТЭ осадок перезаряжается и становится положительно заряженным из-за адсорбции Ag -ионов. Если в растворе присутствуют ионы красителя, имеющие определенный заряд, то они могут служить противоионами и придавать осадку окраску. Например, флуоресцеин — слабая органическая кислота желто-зеленого цвета, диссоциирует с образованием аниона, который адсорбируется на положительно заряженном осадке Ag l после ТЭ. При адсорбции окраска красителя изменяется на розовую (возможно, из-за образования малорастворимого комплекса с ионами серебра). [c.99]

    В настоящее время для практических целей в титрометрическом анализе применяют, в основном, аргентометрическое тирование, в основе которого лежит реакция образования труднорастворимых осадков галогенид- и псевдогалогенид-ионов с ионами серебра. Для определения точки эквивалентности при этом используют три способа индикации по образованию окрашенного осадка в присутствии индикатора хромат-иона (метод Мора) по образованию окрашенного комплекса в присутствии индикатора железа (III) (метод Фольгарда) по изменению цвета адсорбированного красителя на поверхности осадка (метод Фаянса). [c.279]

    Фаянс с сотрудниками очень тщательно исследовали рефракцию десятков солей и пытались использовать полученные данные для доказательства неполной диссоциации сильных электролитов. Доводы Фаянса были, однако, опровергнуты акад. Бродским, так что эти многочисленные работы представляют теперь главным образом исторический интерес. В 1968 г. было, впрочем, отмечено [19], что рефрактометрия может оказаться полезной для определения очень больших констант диссоциации (порядка единицы), когда применение других методов становится затруднительным. [c.66]

    Наиболее точные результаты при аргентометрическом определении цианидов дает метод Фаянса, основанный яа применении адсорбционных индикаторов,которыми являются органические реактивн. [c.17]

    Сравнительные данные о точности методов определения бромидов по Мору, Фольгарду и Фаянсу опубликованы в работе [613]. Обзорный материал об адсорбционных индикаторах и их применении в анализе бромидов имеется в работах [38, 205, 209а, 911]. [c.81]


    Детальное рассмотрение отдельных случаев титрований по методу осаждения читатель может найти в соответствующей литературе [47]. Сюда относятся, например, определение галогенидов методом Мора с образованием в конечной точке титрования окрашенного хромата серебра, метод адсорбционных индикаторов Фаянса, метод Фольгарда с образованием в конечной точке FeS №+, титрование смесей галогенидов, сопровождающееся выделением твердых растворов и адсорбционными эффектами, титрование фторида раствором тория(IV), титрование сульфата раствором бария. [c.208]

    Один из первых аргентометрических методов определения га" логенид-ионов — безындикаторный метод Ж. Гей-Люссака [24]. Титрование проводят маленькими порциями до прекращения помутнения после прибавления раствора азотнокислого серебра. Метод дает точные результаты, но кропотлив и требует определенного навыка. Поэтому на практике обычно пользуются методами с применением индикаторов. Основные варианты аргенто-метрического титрования сводятся к трем методам Мора, Фоль-гарда. Фаянса. [c.35]

    А. И. Бродский показал, что примененная Фаянсом методика измерений давала удовлетворительные результаты только для концентраций не ниже 1 —2-н., а между тем, как установил сам Фаянс, в концентрированных растворах на рефракции ионов сильно влияет деформация их внешних электронных оболочек, обусловленная взаимодействием силовых полей ионов и молекул. Очевидно, для исключения указанных искажающих факторов следовало изучать возможно более разбавленные растворы, что было в то время неосуществимо из-за явно недостаточной точности имевшейся рефрактометрической методики. Поэтому А. И. Бродский с участием Н. С. Филипповой и Ж. М. Шершевер занялся разработкой прецизионного интерферометрического метода определения показателей преломления и путем постепенного совершенствования довел его точность до 1 10 единицы. Поскольку для вычисления рефракции кроме разности показателей преломления Ага необходимо было знать и точное значение разности плотностей раствора и растворителя Ad, А. И. Бродский совместно с О. К. Скарре и С. Г. Демиденко разработал дифференциальный пикпометрический [c.16]

    Одним из наиболее важных семейств адсорбционных индикаторов являются производные флуоресцеина. Довольно часто в качестве адсорбционного индикатора для титрования хлорида нитратом серебра в нейтральном или слабощелочном растворе используют натриевую соль флуоресцеина. Эта соль ионизуется в растворе, 01бразуя катион натрия и ашюн флуоресцеина, который обозначим 1п (анион индикатора). Вначале в сосуде для титрования образуется некоторое количество хлорида серебра. В любой момент титрования до точки эквивалентности хлориды существуют в растворе в избытке, поэтому первичный ионный слой состоит из адсорбированных хлорид-ионов, а вторичный ионный слой — из любых катионов, имеющихся в растворе, например ионов натрия или водорода. Отрицательно заряженных ионов индикатора 1п адсорбируется лишь небольшое число, поскольку их замещают на поверхности осадка хлорид-ионы. После точки эквивалентности в растворе существует избыток нитрата се ребра, поэтому первичный адсорбционный ионный слой содержит ионы серебра, а вторичный ионный слой состоит из отрицательно заряженных ионов, значительное число которых будут анионами индикатора. Натриевая соль флуоресцеина придает раствору флуоресцирующий желто-зелвный цвет, а когда анионы индикатора адсорбируются на осадке в качестве противоионов, наблюдается изменение цвета — частицы осадка становятся ярко-розовыми. Считают, что это изменение цвета связано с искривлением или с изгибом структуры иона флуоресцеина, когда он притягивается к частицам осадка, имеющим положительный заряд вследствие адсорбции ионов серебра. Фактически анион флуоресцеина является индикатором на адсорбированные ионы серебра. Поэтому конечную точку титрования фиксируют по изменению зеленой окраски раствора в розовую окраску осадка. На практике, поскольку частицы осадка хорошо диспергированы в растворе, наблюдают изменение окраски всего раствора от желто-зеленой в розовую. Такая методика определения хлоридов обычно называется методом Фаянса. [c.260]

    Сульфаты определяли фототур бидиметрически в виде суспензии Ва504 в водноорганическом растворе [5, 6], и КЬ — эмиссионным пламенно-фотометрическим методом [7]. Для спектрофотометрического определения Си и Ре из одной пробы использовали селективные реагенты 2,2 -бицинхони-новую кислоту [8] и 2-нитрозо-1-нафтол-4-сульфокислоту [9]. Измерения оптической плотности растворов выполняли в микрокюветах с малым отношением объема к толщине поглощающего слоя [10]. При изучении распределения макрокомпонента использовали метод аргентометрического титрования по Фаянсу [II]. [c.85]

    Ниже следуют отдельные указания по аргентометрическому определению хлорида методами Мора, Фольгарда и Фаянса. С не-больщими видоизменениями их можно использовать для определения и других анионов (см. табл. 8-2 т. 1). [c.348]

    Обычно для определения йодида калия применяют метод обратного титрования (метод Фольгарда) или прямое титрование с адсорбционным индикатором эозинатом натрия (метод Фаянса). [c.148]


Смотреть страницы где упоминается термин Фаянса метод определения: [c.32]    [c.54]    [c.381]    [c.290]    [c.193]    [c.84]    [c.381]    [c.391]    [c.303]    [c.196]    [c.19]   
Объёмный анализ Том 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Метод Фаянса

Определение хлорид—иона методом Фаянса (с адсорбционными индикаторами)

Опыт 10. Определение хлорида по методу Фаянса

Фаянс

Фаянса метод определение хлоридов



© 2025 chem21.info Реклама на сайте