Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипептиды а и формы

    Вторичная структура белка — форма полипептид-ной цепи в пространстве. С помощью рентгеноструктурного анализа и других физических методов исследования установлено, что полипеп-тидные цепи природных белков находятся в скрученном состоянии — в виде спирали. Спиральная структура удерживается водородными связями, возникающими между группами СО и NH аминокислотных остатков соседних витков спирали (на рис. 18.1, а обозначены пунктиром). Подобная вторичная структура получила название а-спирали (рис. 18.1, а). Водородные связи в ней направлены параллельно длинной оси спирали (а-спирали чередуются с аморфными частями). [c.352]


    Реальность более сложна, поскольку определенные полипептиды хлоропластов кодируются ядерными генами и синтезируются на цитоплазматических рибосомах 805-типа (или эукариот). Эти пептиды затем транспортируются в хлоропласты и в известных случаях превращаются в активные формы после отщепления небольшого участка. Поэтому значение генома хлоропластов представляется не совсем ясно. [c.238]

    Замечательным явилось сходство рентгенограмм (перечисленных фибриллярных белков и той структурной формы синтетических полипептидов, которая оказалась нечувствительной к их химической структуре. Речь идет об а-спирали. Получены убедительные признаки существования а-спиральной конфигурации в полипептидных цепях фибриллярных белков. Из меренный по рентгенограммам шаг спирали (около 5 А) и величина проекции одного остатка на ось волокна (около 1,5 А) согласуются с расчетными данными для а-спиральных структур. Дихроизм поляризованных инфракрасных спектров поглощения перечисленных фибриллярных белков указывает на то, что. водородные связи в этих белках [c.542]

    Белки, из которых состоят волосы, содержат цистин и имеют сернистые мостики между полипептидиыми цепями. Этот факт исполь.чуется ири химической завивке. Волосы обрабатывают мягким восстановителем, при этом сернистые мостики -Я -5 - разрушаются, восстанавливаясь до групп —5Н. Волосы укладывают локонами, а затем обрабатывают окислителем. Сернистые мостики возникают вновь, закрепляя новую форму волос (рис, 33,11), [c.733]

    В общем случае каждая конформация отличается индивидуальными свойствами. Следовательно, фактически разнообразия в мире белков еще больше, чем это могло показаться при простом подсчете числа изомеров данного полипептида. Форма белковых молекул изменяется под влиянием различных факторов. Она зависит, конечно, от природы самого белка, но также и от концентрации ионов водорода в растворе, температуры, наличия солей и г. д. Тем не менее белки различных групп иногда довольно сильно отличаются формой своих частиц. Так, у глобулинов пептидные цепи свернуты и молекула имеет форму шара или эллипсоида — [c.56]

    Наличие в молекулах полиэлектролнтов групп различной природы определяет возможность возникновения взаимодействий разных видов (электростатических, гидрофобных, водородных связей) и повышенную по сравнению с нейтральными полимерами склонность цепей полиэлектролитов к конформационным изменениям при изменении pH, температуры раствора, природы растворителя. Об изменении конформации макромолекул можно судить по значению параметра а уравнения Марка — Куна — Хаувинка [т]] = = КМ . Известно, что а зависит от конформации макромолекул в растворе и изменяется от нуля для очень компактных клубков до 2 для палочкообразных частиц. Для многих глобулярных белков а = 0. В растворе сильного полиэлектролита при достаточно высокой ионной силе раствора а = 0,5, т. е. цепь имеет конформацию статистического клубка с уменьшением ионной силы параметр а увеличивается и при ионной силе, близкой к нулю, стремится к а = 2. Для слабого полиэлектролита в заряженной форме, а также для полипептидов в конформации а-спирали а = = 1,5—2. [c.123]


    Знание конформаций дипептидов необходимо для понимания структуры глобулярных и фибриллярных белков. Если какие-либо области (ф, -ф) запрещены в дипептидах, то они будут запрещены и в полипептидах. Формы ям и относительные стабильности также сохраняют свое значение при переходе от дипептидов к большим молекулам, и потому закономерности, найденные для дипептидов, имеют общее значение. [c.370]

    Белки — высокомолекулярные полипептиды, представляют собой сложные биополимеры. Их различают по составу и форме молекул. [c.310]

    Подобно фактору роста нервов, существует эпидермальный фактор роста, также синтезирующийся в подчелюстной железе мышей-самцов это полипептид, который состоит из 53 аминокислотных остатков [156, 157]. Выделена свойственная человеку форма этого фактора [157], идентичная, видимо, урогастрону [158]. Последний обладает свойством предотвращать развитие язвы желудка и находится в относительно больших количествах в моче беременных женщин (у которых обычно не развиваются язвы). [c.358]

    ТРЕТИЧНАЯ СТРУКТУРА БЕЛКОВ. Белки делятся на две большие группы — фибриллярные и глобулярные. Для удобства классификации белки, у которых отношение длины к ширине больше 10, называют фибриллярными, а белки для которых это отношение меньше 10,— глобулярными. Фиброин шелка и р-форма (развернутая форма) кератина, а также синтетические полипептиды принадлежат к группе фибриллярных белков,, у которых почти [c.409]

    По числу аминокислотных остатков пептиды разделя ЮТСЯ иа ди, три, тетрапептиды, а также полипептиды Белки — высокомолекулярные полипептиды, представляют собой сложные биополимеры Их различают по составу и форме молекул [c.310]

    В организме млекопитающих С. существует в дву мол. формах, к-рые образуются иэ общего предшественника,-собственно С. (С.-14) и полипептида, состоящего из 28 аминокислотных остатков (т. наз. С.-28 в нем аминокислотная последовательность С. соответствует фрагменту 15-28). В тонком кишечнике образуется в осн. С.-28, тогда как в поджелудочной железе и мозге--С.-14. [c.383]

    Для облегчения печатания и для экономии места в качестве стандартного соединительного символа используется дефис, обозначающий по существу пептидную связь. Используя глицин как пример, покажем, что аминокислота определенной структуры может входить в состав полипептида в трех разных формах  [c.263]

    Глобулярные белки заметно различаются по плотности упаковки и по содержанию гидратационной воды [24, 25]. Однако наиболее типична для них плотность - 1,4 г-см . При средней массе остатка в 115 дальтон наш полипептид из 300 остатков составит по массе 34 500 дальтон, или 5,74-10 г, и займет объем в 41 нм . Это может быть куб с ребром 3,45 нм, параллелепипед размерами 1,8х3,6х6,3 нм, сфера диаметром 4,3 нм или же какое-то геометрическое тело весьма неправильной формы. При расчетах молекулу белка чаще всего представляют в виде идеализированного эллипсоида или цилиндра. [c.103]

    Вскоре появляется знаменитая серия работ Л. Полинга и Р. Кори (1951 г.), в которых авторы рассмотрели все ранее известные структурные модели полипептидов, в том числе предложенные Брэггом, Кендрью и Перутцем, и отвергли их. Вместо них они предложили две новые низкоэнергетические регулярные пространственные формы - а-спираль и р-складчатый лист. Один виток а-спирали включает 3,6 аминокислотных [c.70]

    Белки состоят в основном из /.-аминокислот, характеризующихся определенными значениями [а]в. Полипептиды, полученные из -аминокислот, обладают оптической активностью и в форме статистического клубка. Однако основной вклад в оптическую активность белка дает специфическая спиральная упаковка плоских амидных групп —ЫН—СНК—СО— (звездочка отмечает асимметрический атом углерода, К — боковая группа, специфичная для каждой аминокислоты). В настоящее время наиболее щироко известны две упорядоченные структуры белков а-спираль и р-склад-чатая структура. Переходы амидной группы л->л и /г—>-я вносят различные вклады в оптическую активность полипептидных цепей, находящихся в различных конформациях соответственно спектры ДОВ и КД полипептидов в различных конформациях отличаются друг от друга. На рис. 24 приведены спектры ДОВ и КД модельных полипептидов в конформациях статистического клубка, [c.45]

    Ацетилкофермент А является активной формой-уксусной кислоты и служит ключевым соединением для биосинтеза различных классов соединений жирных кислот, фенолов, терпеноидов, стероидов. В биохимических системах нередко молекулы активируются при фосфорйлировании. Именно в этой форме реагируют аминокислоты при синтезе полипептидов, претерпевают трансальдолазные превращения сахара. Изучение активных молекул открывает путь к принципиально новым методам в органическом синтезе. [c.257]

    Белки состоят в основном из L-аминокислот, характеризующихся определенными значениями [а]с. Полипептиды, полученные из -аминокислот, обладают оптической активностью и в форме статистического клубка. Однако основной вклад в оптическую активность белка дает специфическая спиральная упаковка плоских амидных групп —NH— HR—СО— (звездочка отмечает асимметрический атом углерода, R —боковая группа, специфичная для каждой аминокислоты). В настоящее время наиболее широко известны две упорядоченные структуры белков а-спираль и р-склад-чатая структура. Переходы амидной группы и п- л вносят [c.45]


    Др. тип регуляции активности ключевых ферментов-их хим. модификация (напр., обратимое ковалентное фосфорилирование, гликозилирование). Нек-рые ферменты активны в модифицированном, а ряд ферментов - в немодифици-рованном состоянии. Хим. модификация и превращение модифицированного фермента в исходную форму катализируются разными ферментами, чаще всего аллостерич. природы, к-рые, т. обр., выступают в роли регуляторов активности ферментов. Так, катализирующая фосфорилирование белков, в т. ч. ферментов, цАМФ-зависимая протеинкиназа-тетрамерный белок, состоящий из двух типов субъединиц (полипептидов). Фермент активен лишь после связывания двух молекул циклич. аденозинмонофосфата (цАМФ) с двумя регуляторными субъединицами в результате такого связывания фермент диссоциирует на две каталитически активные субъединицы и димер, с к-рым связаны две молекулы цАМФ. Т. обр., изменение активности ферментов путем их хим. модификации дополняет аллостерич. регуляцию и составляет часть каскадного механизма регуляции. Хим. модификацию ферментов осуществляют также специфич. протеазы, катализирующие ограниченный протеолиз и тем самым инактивирующие ферменты (напр., разрушая апоформы ферментов) или, наоборот, превращающие неактивные проферменты (напр., проферменты пищеварит. протеаз-пепсина и трипсина) в каталитически активные формы. [c.219]

    Многие полипептиды и белки исследовались с помощью рептгепос1руктурного анализа. При этом были подтверждены некоторые характерные особенности их структуры. Наиболее часто встречаются два типа организованной вторичной структуры, хотя нередко молекулы белков имеют более беспорядочное строение. В а-.форме полиамидная цепь свернута в спираль, в [c.301]

    Обе эти формы легко различимы по характерным значениям оптического вращения. Как и в случае нативных и денатурированных белков, беспорядочно ориентированные синтетические полипептиды имеют очень малое вращение, и то время как спирализованные полипептиды обладают большой вращательной способностью. Различие между спиральной конформацией и клубком особенно заметно при рассмотрении кривых дисперсии оптического вращения в далекой ультрафиолетовой области. Блу (1961) сообщил о вращении, измеряемом десятками тысяч градусов. Для этой цели был успешно применен новый прибор для определения спектров кругового дихроизма (Руссель — Улаф, 1961). [c.712]

    Лиотропные Ж. к. образуются при растворении нек-рых в-в в определенных р-рнтелях. Напр., водные р-ры мыл, полипептидов, лнпндов, белков, ДНК и др. образуют Ж. к. в определенном интервале концентраций н т-р. Структурными единицами лиотропных Ж. к. являются надмолекулярные образования разл. типов, распределенные в среде р-рнтеля и имеющие цнлнндрич., сферич. или др. форму. [c.148]

    Конформация цепей полимеров виниловых мономеров определяется конфигурацией последоват. асимметрич. атомов С, фрагмента — HR—. В изотактич. полимерах (—СН — HR—) плоская зигзагообразная конформация цепи невозможна из-за стерич. отталкивания соседних групп R. Вследствие этого происходит последоват. транс-гош-ориентация связей и цепь приобретает спиральную конформацию, закрученную влево или вправо. Изотактич. макромолекулы могут образовывать спирали разных видов, а синдиотактические-могут существовать не только в виде спирали, но и в виде плоского зигзага. В тех полимерах, у к-рых радикалы не слишком объемны, спираль содержит три мономерных звена на виток (тип 3,), как, напр., у изотактич. полипропилена (табл. 2). В случае полимеров, содержащих объемные боковые группы, образуются более развернутые спирали. Так, спираль в макромолекуле поли-винилнафталина содержит четыре звена в витке (тип 4,). Спирально-упорядоченные структуры макромолекул характерны для полипептидов, белков, нуклеиновых к-т. Форма и размер заместителей в мономерном звене С.п. определяют не только параметры спиральной конформации цепей в решетке, их т-ры плавления, но и скорость кристаллизации, р-римость и осн. деформац.-прочностные св-ва. Изотактич. полимеры, содержащие очень объемные заместители, характеризуются высокими т-рами плавления и стеклования (табл. 2). [c.429]

    Если бы было возможно получить полипептидную цепь в вакууме, то спираль (рис. 20,4,а) была бы стабильной формой при низких температурах, а неупорядоченный клубок (рис. 20.4, в) — при высоких температурах. Для реакции спираль—неупорядоченный клубок при положительных значениях ДЯ и Д5 значение ДС будет положительным при низких температурах и отрицательным при достаточно высоких. Однако полипептиды сильно взаимодействуют с растворителем, и в результате этого неупорядоченный клубок может иметь более низкие значения энтропии и энтальпии в некоторых растворителях, чем спираль. В таком растворителе повышение температуры будет вызывать переход неупорядоченный клубок — спираль в полипептиде. Переход такого типа показан на рис, 20.5 для поли-у-бензил-Ь-глутамата в смеси дихлоруксусной ислрты и дихлорэтана. [c.605]

    Также как синтетические полипептиды, а-белки могут быть переведены в р-форму. Это достигается растяжением, иногда в специальных условиях. Рентгенограммы р-белков показывают, что их молекулярные цепи принимают при растяжении вытянутую конфигурацию. Водородные связи -в р-белках также, как в синтетических/полипептидах, направлены перпендикулярно оси волокна. р-Форма белков нестабильна и после удаления растягивающего усилия, как правило, вновь восстанавливается а-спиральная конфигурация цепей. Только один белок,— фиброин шелка в естественном состоянии существует в виде р-формы. Образование Р- Конфигурации цепей в фиброине шелка происходит в тот момент, когда шелковичный червь прядет шелковую нить. Образующиеся при этом большие силы давления развертывают молекулярные цепи белка. Стабильность образовавшейся р-конфигурации в нити фиброина шелка объясняется тем, что на отдельных фрагментах молекул этого белка скапливаются остатки с короткими боиовыми цепями — глицин, аланин, серин. Отталкивание боковых групп этих остатков во много раз меньше отталкивания больших боковых цепей других аминокислот. Поэтому Р-структуры, возникающие на отдельных фрагментах цепей фиброина шелка (в местах скоплений остатков с короткими боковым и дшями), оказываются относительно стабильными. Это подтверждается изучением р-структур синтетических полипептидов с короткими боковыми цепями, таких, как поли-(глицил- аланин). [c.543]

    Тожалуй, следует подчеркнуть, что структурные формы, наблюдае-, мые в фибриллярных белках, выражены не столь четко, как в синтетических полипептидах. Это объясняется тем, что локальные нарушения, вызываемые структурными различиями боковых групп, портят структуру. [c.543]

    При поиске решения структурной проблемы белка особенно вдохновляющими примерами явились результаты теоретических исследований Л. Полинга и Р. Кори регулярных структур полипептидов [53] и Дж. Уотсона и Ф. Крика двойной спирали ДНК [54]. В этих работах с помощью простейшего варианта конформационного анализа - проволочных моделей, получивших позднее название моделей Кендрью-Уотсона, а также ряда экспериментальных данных, прежде всего результатов рентгеноструктурного анализа волокон (в случае ДНК еще и специфических соотношений оснований Э. Чаргаффа), удалось предсказать наиболее выгодные пространственные структуры полимеров. Собственно, предсказана была как в случае пептидов, так и нуклеиновых кислот, геометрия лишь одного звена, которое в силу регулярности обоих полимеров явилось трансляционным элементом. Белок же - гетерогенная аминокислотная последовательность, и поэтому таким путем предсказать его трехмерную структуру нельзя. Но то обстоятельство, что простейший, почти качественный, конформационный анализ привел к количественно правильным геометрическим параметрам низкоэнергетических форм звеньев, повторяющихся в гомополипептидах и ДНК, указывало на большие потенциальные возможности классического подхода и его механической модели в описании пространственного строения молекул. [c.108]

    На формирование пространственного строения полипептидов оказывают влияние не только различие в энергии конфигураций отдельных звеньев цепи (хотя это важно), но и кооперативные эффекты. Поэтому в 4>инципе не исключены ситуации, когда даже небольшой предпочтитель-Иости в энергии одной из форм окажется достаточно для ее реализации по й длине полипептидной цепи. Или, напротив, по общей энергии Полипептида может стать оптимальной конфигурация пептидной группы, [c.135]

    Перед демонстрацией исключительных возможностей собственного подхода Меклер и Идлис "констатируют", что "сегодня молекулярная биология, исходя из аминокислотной последовательности даже такого маленького полипептида, ничего не может сказать ни о его трехмерной структуре вообще, ни о положении его S-S-связей в частности. Ибо огромное число степеней свободы этой полипептидной цепи исключает возможность рассчитать ее конформацию согласно законам физики и химии, например, исходя из величин энергий взаимодействий ее атомов. Согласно теории, которую мы разработали, трехмерная структура любого полипептида определяется биологически - совокупностью А-А-связей, образующихся между его аминокислотными остатками" [352. С. 47]. Эта цитата примечательна двумя высказанными в ней положениями. Первое свидетельствует о незнании авторами литературы, посвященной теоретическому конформационному анализу пептидов и белков, становление которого произошло в 1963 г. с появлением основополагающей работы Г. Рамачандрана и соавт. [356]. Прямым опровержением такого заявления Меклера и Идлис о неспособности физики и химии рассматривать подобные проблемы служат, во-первых, результаты расшифровки генетического кода трансляции, которые были получены как раз с помощью физики и химии, и, во-вторых, материал этой книги и ее библиография, насчитывающая многие сотни ссылок на теоретические конформационные исследования пептидов и белков. Второе положение касается не чисто научных, а в большей мере мировоззренческих вопросов. Оно возвращает читателя к казалось бы давно ушедшим временам, когда в материалистической философии серьезно обсуждалось существование механической, физической, химической и биологической особых форм движения материи, находящихся в субординационных отношениях. [c.540]


Смотреть страницы где упоминается термин Полипептиды а и формы: [c.373]    [c.259]    [c.246]    [c.318]    [c.217]    [c.147]    [c.233]    [c.265]    [c.238]    [c.69]    [c.70]    [c.71]    [c.72]    [c.134]    [c.179]    [c.188]    [c.207]    [c.282]    [c.397]    [c.507]    [c.60]   
Успехи спектроскопии (1963) -- [ c.319 ]




ПОИСК





Смотрите так же термины и статьи:

Полипептиды



© 2025 chem21.info Реклама на сайте