Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растрескивание в средах газовых

    Коррозионное растрескивание в газовых средах [c.356]

    Коррозионное растрескивание в газовой среде [c.405]

    Хотя одинаковые устройства для испытаний с постоянной нагрузкой используются и для материалов, у которых растрескивание происходит за счет коррозии активных участков, и для материалов, разрушающихся под влиянием напряжений, инициированных водородом, однако имеется одно очень важное отличие в методике испытания. При наличии в сплаве активных участков, подвергающихся коррозии, испытания всегда проводят в присутствии коррозионной среды, а в случае водородного охрупчивания или наличия напряжений, инициированных водородом, испытания могут быть проведены после того, как в сплав введен водород. Последнее можно осуществить путем или принудительного газонасыщения, или катодной поляризацией, или одним из следующих процессов — сваркой, травлением и нанесением гальванических покрытий. Однако испытания с постоянной нагрузкой проводятся также в средах (газовых или водных) с тем, чтобы водород проникал в испытуемый образец в процессе приложения растягивающих напряжений. [c.323]


    Термическое растрескивание представляет собой явление, возникающее в результате внутренних напряжений, вызываемых различием термического расширения зон футеровки при тепловых ударах или при постоянном большом температурном градиенте. Например, значительное разрушение динасовой футеровки при резком нагреве ее с холодного состояния в процессе службы или при резком охлаждении до обычных температур. Футеровка вращающейся печи при каждом обороте корпуса подвергается термическому воздействию обжигаемого материала и печной среды. Эти воздействия имеют значительные температурные колебания. Во время контакта с газовой средой при каждом обороте печи температура футеровки повышается, а при контакте с обжигаемым материалом понижается. Амплитуда колебаний температуры поверхности реакционного объема достигает 40—100 °С, а число их составляет 1400—1700 в сутки [321. Терми- [c.104]

    Последнюю формулу можно использовать также для сравнения устойчивости к растрескиванию испытуемых образцов, когда они контактируют с газовой средой с различной температурой для двух поверхностей образца при постоянном распределении температуры. [c.106]

    Коррозионная среда. Коррозионное растрескивание металлов и сплавов может идти в различных средах — как газовых (воздух, водяной пар), так и жидких (растворы электролитов, органические растворители, расплавленные соли). Обычно это средне- и малоагрессивные среды, которые вызывают у ненапряженного металла незначительную общую коррозию. Отдельные металлы и сплавы подвержены коррозионному растрескиванию только при наличии в среде специфических ионов. Один и тот же ион может ускорять растрескивание одного металла и тормозить растрескивание другого. Например, хлор-ионы вызывают растрескивание аустенитных хромоникелевых сталей, но предотвращают коррозионное растрескивание углеродистых в растворах нитратов. Ион NO3 , наоборот, вызывает растрескивание углеродистых и тормозит растрескивание аустенитных сталей. [c.451]

    Большое значение имеет физическое состояние среды. При одной и той же температуре и одинаковых напряжениях аустенитная сталь подвержена значительно более быстрому растрескиванию при переменном воздействии воды и водяных паров, чем в условиях контакта с одной только газовой (пар) илп жидкой (вода) фазой. [c.452]

    В настоящее время установилось единое мнение, что главная опасность при воздействии сероводородных сред заключается не в увеличении скорости коррозии, а в усилении наводороживания стали, приводящего к охрупчиванию металла и коррозионному растрескиванию оборудования нефтяных и газовых месторождений. [c.20]

    Эмалированию подвергаются черные и цветные металлы, которые используют при производстве аппаратуры в фармацевтической, химической, пищевой отраслях промышленности, при производстве изделий домашнего обихода. Помимо декоративного назначения эмали эффективно защищают основной металл от коррозии во многих средах. Неорганические эмали по своему составу являются силикатами, т. е. соединениями кремния. К основным недостаткам таких покрытий относятся хрупкость и растрескивание при тепловых и механических ударах. Эмалирование также применяется для защиты от газовой коррозии. [c.220]


    Воздействие среды на высокотемпературное разрушение, в данном случае — разрыв, было бы лучше всего рассматривать, по-видимому, на основе представлений о зарождении и росте трещин. В общем случае нельзя заранее предполагать, что гетерогенность, вызываемая коррозией, всегда усиливает образование трещин. Хотя в окислительных газовых средах часто наблюдается более раннее зарождение трещин [18—21, 173], известны и случаи, когда окислительные среды замедляли растрескивание [25, 29, 61]. Подобный положительный эффект возникает, по-видимому, когда образующиеся продукты коррозии могут обволакивать поверхностные включения, являющиеся более вероятными концентраторами напряжений, чем сами коррозионные продукты. Способность фаз продуктов коррозии вызывать растрескивание зависит от хрупкости этих продуктов [116], напряжений, возникающих при их выделении [102], и морфологии [140]. Морфологический аспект особенно важен в случаях, когда межзеренные границы подвержены прямому окислению с образованием длинных клинообразных включений окислов [18—21, 103]. [c.44]

    Химический состав и структура металла влияют на коррозионную стойкость в конкретных средах. Большее значение имеет стойкость защитных пленок в зависимости от характеристики феды. Так, в газовых средах стойкость этих пленок определяется диффузией ионов в кристаллической решетке окислов, а примеси в металлах и сплавах могут не только ухудшать их коррозионную стойкость (азот в коррозионностойких сталях в условиях коррозионного растрескивания), но и значительно повышать их устойчи- [c.6]

    Часто преимущественному разрушению подвергаются границы зерен металла, связь между зернами ослабевает, что резко ухудшает механические свойства металла и может привести к растрескиванию аппарата. Этот вид коррозии называется межкристаллитной (МКК). Опасность растрескивания особенно велика, если аппарат находится под действием динамических и механических нагрузок. В некоторых случаях воздействие среды приводит к глубоким изменениям состава и свойств материала. Папример, наводороживание, обезуглероживание, азотирование — эти явления наиболее часто наблюдаются при газовой коррозии. [c.120]

    Практика показывает, что коррозионное растрескивание является очень распространенным видом разрушения на газовых заводах [206]. Коррозионная статическая усталость малоуглеродистых сталей распространена также в средах, состоящих из смесей ЫНз Нг5 НСЫ или СО2 4- МНз + йен, или Н25 + СОа + ЫН4- ,НСЫ, причем при отсутствии СО2 или Н25 коррозионного растрескивания не наблюдалось. Необходимо отметить, что почти всегда [c.54]

    Как уже отмечалось, основные неприятности сероводородные среды доставляют не столько из-за коррозии, сколько из-за наводороживанию стали, приводящего в конечном счете к охрупчиванию металла и коррозионному растрескиванию оборудования нефтяных и газовых скважин. В принципе, с общей коррозией можно было бы еще мириться или свести ее до минимума. Однако это не спасает положение, ибо уже небольшие скорости коррозии с водородной деполяризацией приводят часто в присутствии сероводорода к сильному охрупчиванию металла. Объясняется это тем, что гидросульфидные ионы сильно замедляют процесс рекомбинации разрядившихся атомов водорода, поэтому их концентрация на поверхности возрастает и проникновение водорода в металл усиливается. [c.300]

    Наличие сероводорода вызывает коррозию оборудования нефтяных и газовых скважин, газосборных коллекторов, очистных сооружений, магистральных трубопроводов и технологического оборудования перерабатывающих предприятий. В некоторых случаях из-за коррозии возникают аварийные ситуации на буровых скважинах (разрыв трубопровода, разлив нефти и попадание газа в окружающую среду). Сероводород, помимо общей и язвенной коррозии, вызывает сероводородное растрескивание и водородное расслоение металла оборудования и трубопроводов. [c.5]

    Исследуя изменение пористости окатышей, авторы [9.77] не учитывают влияние газовой среды и содержание FeO в окатышах. Введение 1 % угля, отличающегося высоким выходом летучих, снижает прочность готовых окатышей. Это объясняется ростом пористости с увеличением обьема образующихся газов, а также возникновением термических напряжений, вызывающих большее, чем при других добавках, растрескивание. При добавке в шихту 1,5 % твердого топлива наибольшее снижение прочности наблюдается при использовании кокса, что объясняется его крупностью. Тем не менее, авторы считают, что введение добавок с низким выходом летучих предпочтительнее. Использование углей различной крупности не дает полного представления о влиянии добавок на изменение пористости. [c.252]

    В условиях образования легко возгоняющихся продуктов коррозии или возникновения очень рыхлых и полностью незащитных пленок скорость газовой коррозии будет определяться скоростью протекания химической реакции металла со средой или скоростью процесса, нарушающего сплошность пленки окисла возгонкой, растрескиванием или скоростью перехода первичной сплошной окисной пленки в рыхлую. В этих случаях будет наблюдаться примерно постоянная скорость окисления во времени (линейный закон окисления). [c.36]


    По условиям протекания коррозионного процесса разли чают атмосферную коррозию, протекающую под действием атмосферных, а также влажных газов, газовую, обусловленную взаимодействием металла с различными газами — кислородом, хлором и т, д. — при высоких температурах, коррозию в электролитах, в большинстве случаев протекающую в водных растворах и в зависимости от их состава подразделяющуюся на кислотную, щелочную и солевую. При контакте металлов, имеющих разные стационарные потенциалы в данном электролите, возникает контактная коррозия, а при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений — коррозия под напряжением. Понижение предела усталости металла, возникающее при одновременном воздействии переменных растягивающих напряжений и коррозионной среды, называют коррозионной усталостью. Кроме того, различают еще коррозионное растрескивание металла,, возникающее при одновременном воздействии коррозионной среды и внешних или внутренних механических растягивающих напряжений. Этот вид разрушений характеризуется образованием транскристаллитных или межкристал-литных трещин. Под влиянием жизнедеятельности микроорганизмов возникает также биокоррозия. Разрушение металла от коррозии при одновременном ударном действии внешней среды называют кавитационной эрозией. Без участия коррозионного воздействия среды эрозия протекает как процесс только механического износа металла. Многие из перечисленных условий возникновения и развития коррозионных процессов встречаются и в пароводяных трактах ТЭС. [c.26]

    Физико-химический анализ обуглероженного слоя дает определенные сведения о свойствах материала, механизме абляции и механизме его разрушения . Элементарный химический анализ обуглившегося слоя показывает преимущественную потерю определенных элементов (см. рис. 2) и возможное осаждение углерода на стенках пор в результате термического разложения газообразных продуктов. Образование новых химических соединений, например карбида кремния, можно обнаружить методом дифракции рентгеновских лу-чей 94 Общая пористость обуглероженного слоя определяет объем пустот, образующихся при высокотемпературном разложении пластмассы, и косвенно отражает ее сопротивление воздействию механических сил. Распределение пор по размерам в обуглероженном слое показывает его склонность к растрескиванию и относительную эффективность теплообмена между раскаленным обуглероженным слоем и газами, образующимися в процессе абляции. Для определения структуры пор и характера взаимодействия между микрокомпонентами материала можно также использовать микрофотографирование в обычном и поляризованном свете . Очевидно, что для характеристики поведения и свойств пластмасс в газовых средах при высоких температурах необходима как качественная, так и количественная информация . Объем и степень достоверности информации, необходимой для оценки эксплуатационных свойств материалов, зависит от методов и условий испытаний. [c.430]

    Коррозионное растрескивание конструкционных низкоуглеродистых сталей наблюдается в щелочных растворах теплосилового оборудования, глиноземного производства, в щелочном конденсате при производстве силикатного кирпича в растворах нитратов в химической аппаратуре при производстве минеральных удобрений, в безводном аммиаке и аммиачных растворах в агрохимии в средах, содержащих увлажненный сероводород, в аппаратуре и трубопроводах нефтяной и газовой промышленности, в атмосферных условиях и др. [c.163]

    Однако при проектировании и изготовлении патрубков не была учтена возможность образования активной среды, снижающей конструкционные характеристики материалов. Сгорание природного газа с большим избытком воздуха сопровождается образованием значительного количества паров воды и окислов азота, которые вместе с газовой смесью проникают в теплоизолятор (каолиновую вату) в места негерметичных телескопических соединений экрана, что приводит к коррозионному растрескиванию. [c.179]

    В растворе, насыщенном H S и содержащем 5 % Na l и 0,1 % уксусной кислоты (имитация кислой среды газовых скважин), разрушение сплава зависит от температуры и скорости равномерной коррозии, которая преобладает в этих условиях и приводит к образованию водорода. При комнатной температуре разрушение вследствие водородного растрескивания (называемого иногда также сульфидным растрескиванием) протекает обычно только в том случае, если обработанные холодным способом сплавы были подвергнуты последующей термической обработке (состарены на заводе-изготовителе). Старение сплавов, увеличивающее их прочность, может приводить также к усилению равномерной коррозии в кислотах. При этом количество выделяющегося водорода становится достаточным, чтобы вызвать растрескивание. При повышенной температуре разрушения этого типа обычно уменьшаются (меньше водорода проникает в металл и больше удаляется в виде газа). Однако в области повышенных температур водородное растрескивание может смениться КРН, которое связано с присутствием хлоридов. В этом случае контакт сплавов с более активными металлами предотвращает растрескивание (протекторная защита). [c.371]

    Неполное сгорание топлива, имеющее место в авиационных ГТД, как правило, незначительно влияет на количество вьщеляющейся энергии, однако приводит к нежелательным явлениям, связанным с образованием нагара в камере сгорания и дымностью отработавших газов. Нагарообразование в ГТД-это потеря его мошности, забивка форсунок, коробление и выход из строя камер сгорания, разрушение рабочих лопаток газовых турбин и направляюшего аппарата и ряд других отрицательных последствий. Дымность отработавших газов вызывает загрязнение окружающей среды, а повышенная тепловая радиация пламени приводит к местным перегревам камер сгорания ГТД с последующим их короблением и даже растрескиванием. [c.125]

    Коррозия металлических сооружений причиняет огромный ущерб всем отраслям (народного хозяйства. Особенно велики потери в результате коррозии нефте-и газопромыслового оборудова ия, что связано с наличием высокоагрессивных комшонентов в рабочих средах и другими особенностями работы оборудования. Долговечность и (надежность работы его во многом зависят от технико-экономической характеристики конструкцион ного материала для нефтегазодобывающего оборудования, к которому предъявляют чрезвычайно высо кие требования он должен обладать сочетанием прочностных и пластических свойств, сохраняющихся в широком интервале температур, высокой коррозионной стойкостью, стойкостью против водородного охрупчивания, коррози-о нного растрескивания и др. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, что усложняет транспортирование оборудования, увеличение глубин скважин и большие габариты оборудоваиия требуют подъемных механизмов большой мощности, поэтому желательно использование конструкционных материалов, позволяющих снизить массу конструкций. Конструкционные материалы должны быть технологичны и едефицитны. [c.3]

    Для борьбы с коррозией и сульфидным растрескиванием оборудования нефтяных и газоконденсатных скважин широко используются органические ингибиторы коррозии. В отечественной нефтяной и газовой промышленности в настоящее время применяют в основном углеводородрастворимые ингибиторы сероводородной коррозии И-1-А, Север-1 , И-1-В и ИФХАНгаз углекислотной коррозии — ИКСГ-1 в средах газоконденсатных скважин и сильно обводненных нефтяных скважин, содержащих сероводород и (или) углекислый газ —ГРМ и АНПО, а для защиты подземного оборудования нефтяных и газоконденсатных скважин, в средах которых содержатся сероводород, углекислый газ и кислород,— АзНИПИ-72 и И-ЗО-Д. [c.139]

    Разрушение участка трубопровода (0168x12 мм) газа раз-газирования на Карачаганакском нефтегазоконденсатиом месторождении произошло в зоне приварки штуцера (060x14 мм). В момент, предшествовавший разрушению, трубопровод находился под давлением 3,5 МПа в отсутствие движения среды. Температура стенки трубы составляла минус 25-минус 27°С. Зарождение и докритический рост трещин происходили из-за наличия непровара на границе сплавления кольцевого шва штуцера и основного металла трубы. После достижения трещиной критической длины (40-42 мм) началось лавинообразное разрушение в обе стороны от штуцера, о чем свидетельствует наличие шевронного излома. Остановка трещин произошла на основном металле трубы в результате их многократного разветвления. Трещины в шве образовались из-за нарушения технологии подготовки изделий под сварку и возникновения остаточных сварочных напряжений. В соответствии с требованиями нормативной документации штуцер должен изготавливаться без отверстия и привариваться к трубе угловым швом с разделкой кромки. Сверление штуцера и трубы должно выполняться после его приварки с одновременным сверлением отверстия в трубе и удалением возможных непроваров в корне шва. Сварное соединение данного штуцера было выполнено с нарушением технологии изготовления и имело непровары и трещины глубиной до 3 мм. Наличие этих характерных дефектов сварных швов свидетельствовало о том, что контроль качества металла неразрушающими методами не проводился. Предусмотренная технологией местная термическая обработка сварного соединения патрубок-труба , проводимая путем нагрева металла пламенем газовой горелки, не привела к существенному снижению напряжений в сварном шве. Разрущение трубопровода газа разгазирования произошло по механизму сероводородного растрескивания в результате развития недопустимых дефектов (трещины, непровары, высокие остаточные напряжения) в сварном соединении штуцер-труба . [c.31]

    Регулирование коррозионной среды. В некоторых случаях, когда достаточно хороиго известны компоненты, вызывающие КР сталей в данной среде, наиболее эффективен способ регулирования концентрации этих компонентов. Так, хорошие результаты дает обескислороживание растворов хлоридов для защиты аустенитных коррозионно-стойких сталей от КР. Эффективно осушение газовых сред, содержащих сероводород, для уменьшения сульфидного растрескивания. [c.75]

    Основным разделом справочника является его последняя, третья часть, содержащая систематизированные сведения о коррозионной стойкости материалов в различных жидких и газовых средах. Для металлов приведены количественные данные по скоростям коррозии. В отличие от большинства справочников, в таблице указаны также специфические виды коррозии точечная, язвенная, межкристаллитная, коррозионное растрескивание. Для неметаллических материалов принята трехиндексная качественная система оценки стойкости. В тех случаях, когда коррозионные исследования проводились на материалах уже устаревших марок, в таблицах 1 и 2 указаны, где возможно, современные марки, наиболее близкие к исследованным. [c.5]

    Если н атмосферных условиях для образования видимых трещин в растянутой резине необходим довольно длительный срок, при концентрации озона в окружающей образец газовой среде около 0,1% растянутые образцы резины трескаются и разрываются почти мгновенно. Альбрехт [443] назвал озон химическим ножом , характеризуя тем самым чрезвычайно сильное действие, которое оказывает этот агент на растянутую резину. Огромное значение крайне вредного действия озона при эксплуатации эластомеров и изделий из них привело к широкому развитию в последнем десятилетии различных исследований в этой области, причем большинство усилий было направлено на разработку методов предотвращения озонного растрескивания. К настоящему времени эта проблема еще не разрешена полностью, но yHie найдены некоторые способы умен1>шения растрескивания резины нод действием озона. Для уменьшения или полного исключения процессов озонного растрескивания в настоящее время применяют покрытие резины воском или используют добавки химических соедииений, называемых антиозонантами в ряде случаев эти средства защиты применяют одновременно. Кроме того, при производстве изделий из эластомеров предпринимаются все возможные усилия для сведения к минимуму второго условия, определяющего растрескивание изделия, т. е. растяжения материала. [c.130]

    Для углеродистых сталей очень опасной является такая широко распространенная среда, как сероводородная вода или влажный сероводород, с которыми встречаются стальные детали оборудования нефтяной, газовой или химической промышленности. В этих средах наблюдается коррозионное растрескивание стали, которое приводит к быстрому выводу оборудования из строя. Так, например, на серном руднике Шор-Су (Ферганская область Узбекской ССР) полное разрушение деталей насоса, трубопроводов и оборудования, находящихся в сероводородной воде при концентрациях сероводорода до 1000 мг1л, наступало после нескольких месяцев эксплуатации [148]. [c.110]

    Хромомагнезитовые и магнезитохромитовые материалы подвергаются восстановлению в восстанови-тeJUJHыx газовых средах при температуре более 1600 °С, а при температуре ниже 1600 °С идет их окисление. Из-за чередования этих процессов происходит растрескивание футеровки. [c.599]

    Наиболее опасным и часто встречающимся видом коррозионного разрушения оборудования ГФУ являются обусловленные наво-дороживанием расслоение и сероводородное растрескивание стали. Эти виды разрушения возникают в сероводородных средах в присутствии водной фазы при парциальном давлении сероводорода в газовой фазе выше 0,001 ат (см. гл. 3). В наибольшей степени расслоению металла подвержены пропановые аппараты из углеродистых и низколегированных сталей. [c.212]

    Сравнительные исследования 26 марок углеродистых и низколегированных сталей в имитирующем условия газовой скважины растворе Na l-t- Hs OOH + HsS показали наибольшую стойкость у ферритной структуры с относительно мелкими равномерно распределенными сфероидальными карбидами, образующейся после отпуска мартенсита при высоких температурах [160]. С уменьшением величины зерна и переходом от закаленного состояния к улучшенному (т. е. после закалки с высоким отпуском) охрупчивание снижается, а с повышением количества пластинчатого перлита — возрастает. На стойкость к сероводородному растрескиванию при неизменной структуре стали практически заметное влияние оказывает изменение содержания серы (0,002—0,35%) и фосфора (0,004—0,59%). Остальные элементы марганец (0,76—2,5%), никель (0,2—3%), хром (0,03—6,25%), кремний (0,05—2,9%), молибден (0,01—1,85%) не оказывали существенного влияния (если структура не изменялась термической обработкой). Наиболее серьезное влияние оказывала сера — введение уже 0,03% S вызывало заметное усиление охрупчивания при коррозии в сероводородной среде. Это объяснено увеличением количества дефектных участков — сульфидных включений. Показано, что расслоение металла под действием водорода локализуется в местах скопления сульфидных включений. [c.66]

    Влияние газового конденсата на сероводородное растрескивание стали 12Х18Н10Т проверяли при <т = 400 МПа и температуре 50°С на машине ИНК-1 в 5%-ном Na l, насыщенном НгЗ. Растрескивание образцов в такой среде наступило через 35 ч, а с имитирующей присутствие углеводородного конденсата добавкой смеси октана и гексана — через 320 ч [79]. [c.75]

    При температурах выше 800° С окисные слои проявляют тенденцию к растрескиванию, как об stojM свидетельствуют кривые Ат = /(/) [169, 352, 477]. Механизм самовоспламенения окисных слоев рассматривался нами в подразделе о сложной окалине (гл. 2). Однако защитную пленку, состоящую главным образом из FeO СггОз, надежнее создавать с самого начала посредством избирательного окисления, поокольку, по данным Мак-Калафа, Фонтана и Бека [352], она лучще образуется в менее тяжелых условиях, т. е. при более низких температурах и меньшем да1влении кислорода. С повышением концентрации кислорода в газовой среде окорость окисления сплавов железа с хромом возрастает. [c.327]


Смотреть страницы где упоминается термин Растрескивание в средах газовых: [c.100]    [c.49]    [c.27]    [c.43]    [c.106]    [c.115]    [c.28]    [c.79]    [c.361]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.356 , c.405 ]




ПОИСК







© 2024 chem21.info Реклама на сайте