Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление избирательное

    В присутствии продуктов окисления сернистых соединений в объеме электролита образуются соли сульфиновых и сульфоновых кислот, а также сульфаты. Это становится возможным вследствие восстановления сульфоновых кислот на катодных участках корродирующих металлов. Часть полярных соединений (сернистых, кислородсодержащих) избирательно сорбируется на участках металла, характеризующихся неоднородной электронной плотностью. Образование ориентированных молекул приводит к перераспределению электронной плотности, в результате чего поверхность металла насыщается хемо-сорбированными продуктами окисления углеводородных и неуглеводородных компонентов топлив. [c.290]


    Прямое окисление метана под высоким давлением с целью избирательного получения метанола не нашло успешного применения в промышленности и этот метод, по-видимому, не может конкурировать с очень эффективным и хорошо разработанным процессом гидрогенизации окиси углерода. [c.345]

    В отличие от нафтено-парафиновой фракции при окислении загущенных 4% ПМА ароматических фракций масла И-12А накопление продуктов окисления при 140°С замедляется, а при 180 °С —ускоряется [101] (табл. 27). По-видимому, образующиеся при окислении фенольные соединения при 140°С ингибируют окисление, избирательно реагируя с макрорадикалами, а [c.67]

    Эти процессы основаны на способности некоторых видов микробов избирательно окислять парафиновые углеводороды, преимущественно нормального строения, в качестве источника энергии, необходимой для их жизнедеятельности. Биомасса, накопленная микроорганизмами в результате процесса окисления алканов, является побочным продуктом процесса и после выделения в чистом виде используется в качестве основы для получения кормового елка. Депарафинизат используют как компонент зимнего дизель — [c.272]

    Серная кислота тем отличается от галоидных солей алюминия, что она не требует внесения извне инициатора цепи для проведения изомеризации. Инициирующий ион образуется при окислении части углеводорода самой кислотой. Она является более слабым катализатором в том отношении, что не способна вызывать изомеризацию углеводородов, не содержащих третичного атома водорода. Кроме того, она вызывает главным образом изомеризацию, связанную с миграцией метильных групп, не изменяя степени разветвленности углеродного скелета. С этим, несомненно, связано то явление, что, в противоположность галоидным солям алюминия как катализаторам серная кислота вызывает изомеризацию менее разветвленных высших парафинов вполне избирательно, поэтому нет необходимости добавки веществ, подавляющих реакцию крекинга. [c.39]

    Тщательно выбирая сырье, можно получить большое разнообразие материалов с широким пределами вязкости, индекса вязкости и устойчивости к окислению. Такие продукты обычно значительно дороже смазочных масел, полученных при помощи избирательной экстракции и депарафинизации соответствующего сырья, однако, так как возможно варьировать их свойства, они находят применение в специальных областях смазочных масел. На схеме 2 показан типичный процесс. [c.511]

    В настоящее время окисление концентрированного сероводорода до серы в промышленных масштабах осуществляется методом Клауса, где в качестве окислителя выступает диоксид серы. Однако более перспективным представляется способ, основанный на избирательном каталитическом окислении сероводорода без его предварительного извлечения из углеводородных газов. Такой метод исключает необходимость предварительной очистки газов от сероводорода, его концентрирования и окисления до диоксида серы. Не ограничивает применение этого способа и термодинамика процесса, так как окисление сероводорода до серы является экзотермической реакцией. В интервале 100...300°С константа равновесия колеблется в пределах 10 . ..10 что свидетельствует о практически полном смещении равновесия в сторону образования целевого продукта. [c.97]


    Отсюда непосредственно вытекает, что в ряду однотипных катализаторов избирательность по продукту жесткого окисления должна изменяться симбатно с каталитической активностью для избирательности по продукту мягкого окис- [c.14]

    В результате проведенных исследований установлено, что максимальной окислительной активностью, оцененной по суммарному выходу кислорода с газообразными и остаточными жидкими продуктами, обладает катализатор, содержащий оксиды Си и Сг. Минимальная окислительная активность наблюдается для гранулированного железоокисного катализатора, который в то же время обладает максимальной избирательностью по образованию жидких продуктов окисления. Для него наблюдается самый высокий относительный и абсолютный выход кислорода (табл. 2.3) с остаточной фракцией. [c.48]

    Для производства нефтяных битумов используют три процесса — отдельно или в сочетаниях вакуумную перегонку, де-асфальтизацию избирательными растворителями и окисление. Сырьем для вакуумной перегонки обычно служит мазут или гудрон, для деасфальтизации и окисления — гудрон. Товарные битумы получают как непосредственный продукт того или иного процесса или компаундированием продуктов разных процессов либо одного и того же процесса. [c.33]

    Следует отметить, что явления отравления используют на практике а для улучшения свойств катализаторов. Поскольку действие яда неодинаково сильно сказывается на различных реакциях, протекающих на данном катализаторе в данной реакционной системе, создается возможность применять так называемое селективное отравление для повышения избирательности катализатора. Широко известно, например, селективное отравление серебряных катализаторов галогенами, когда реакция полного окисления этилена подавляется сильнее, чем реакция образования окиси этилена, и изби- [c.56]

    Сульфат ртути Н 304 позволяет при определенных условиях проводить окисление, не затрагивая двойных связей (избирательно), например  [c.139]

    Но в большинстве случаев агенты окисления обладают избирательным действием. [c.140]

    К процессам, избирательность которых не зависит или слабо зависит от температуры в широких пределах ее изменения, относятся некоторые экзотермические реакции, протекающие во внешнедиффузионной области, например, реакции окисления аммиака в азотную кислоту, метанола в формальдегид и др. В процессах этого рода на поверхности зерен катализатора автоматически устанавливается температура адиабатического разогрева (см. раздел 111.3) адиабатический режим становится при этом не только рациональным, но и единственно возможным. [c.264]

    Было также предложено окислять смесь м- и л-ксилолов в газовой фазе с целью избирательного окисления л1-ксилола в продукты полного окисления, получая таким образом чистую терефталевую кислоту. [c.174]

    Образовавшийся спирт конденсируют под давлением (210 — 280 ат) для более эффективного выделения его из газов последние подвергают рециркуляции. Неочищенный продукт содержит около 0,02—0,06% ацетона, 0,1—0,2% альдегидов, 0,05—0,09% олефинов и 0,07% пентакарбонила железа. Эти соединения удаляют при помощи избирательного окисления. После перегонки получают мети- [c.249]

    Сульфат натрия взаимодействует избирательно с элементами, имеющими высокую энергию образования оксидов, т. е. для хромоникелевых сталей и сплавов этот процесс идет с преимущественным окислением хрома, постепенным накоплением сульфидов никеля и образованием эвтектики N1—N 382, расплав которой наступает при 620—645 °С и вызывает катастрофическую сульфидную коррозию. [c.176]

    При всех условиях, при которых могут взаимодействовать кислород и углеводороды, термодинамика сильно благоприятствует полной деструкции углеводородов до СО, СО2 и Н2О. Тем не менее при правильном выборе катализатора и условий работы можно с хорошими выходами получать целый ряд промежуточных продуктов окисления или дегидрогенизации. Наиболее интересные из этих продуктов обладают тем же углеродным скелетом, что и исходный углеводород,и их можно охарактеризовать как продукты атаки на связь С—Н, продукты отщепления Н или присоединения кислорода к ненасыщенным системам. Во многих случаях эти соединения претерпевают дальнейшее окисление с разрывом С—С-связи, что в конечном счете приводит к образованию окислов углерода из-за сложного переплетения последовательных и параллельных реакций избирательность в отношении первичных продуктов падает с повышением степени превращения. [c.145]

    Окислительные катализаторы, в том числе и переходные металлы и их окислы, как правило, относятся к первому классу классификации Рогинского степень окисления этих твердых тел является функцией окружающих условий во время катализа, и только о благородных металлах (Р1, Аи) можно с уверенностью сказать, что они при всех условиях пребывают в металлическом состоянии. Обнаружено, что смешанные окислы более активны и обладают большей избирательностью, чем простые окислы, и нередко исследователи смешивают окислы переходных металлов с окислами элементов групп 1УБ и УБ. В этой области известно очень много работ, касающихся промышленных контактов, и огромное количество патентов, но в то же время число фундаментальных исследований и характеристик активных фаз невелико. [c.145]


    Оба компонента сплава в условиях окисления образуют твердый раствор. Причиной избирательного выгорания одного из компонентов сплава может быть или большая термодинамическая возможность образования окислов, содержащих в своем составе данный компонент, или большая кинетическая обусловленность образования окислов одного из компонентов сплава. [c.97]

    Изменение состава сплава и окалины на границе раздела сплав—окалина во времени показано на рис. 65 содержание металлов Ме и М/ в сплаве на границе с окалиной обозначено х, а в образующейся на этой границе окалине у. При этом всегда у у X, т. е. металл Ме выгорает в относительно большем количестве, чем то, которое бы отвечало окисляемому сплаву, а х и у связаны таким образом между собой, что с уменьшением х уменьшается и у, и наоборот (что вытекает из природы химических процессов независимо от причины избирательного окисления одного из компонентов — термодинамической или кинетической характеристики процесса). [c.97]

    Марголис [12] указала на существенную связь избирательности окисных катализаторов с такими факторами, как наличие недостроенной -оболочки у иона металла, работа выхода электрона окисла, геометрия кристаллической решетки. Гельбштейн с сотрудниками [14] предлагает в качестве определяющих критериев при подборе катализаторов окисления олефинов энергию связи кислород— [c.154]

    В ТО же время более высокая избирательность этого растворителя позволяет наиболее полно извлечь из сырья полициклические ароматические углеводороды и смолы, что дает возможность получать масла с более высоким индексом вязкости, но меньшей стабильностью против окисления. Характеристика депарафинированных масел, предварительно очищенных НМП и фенолом, приведена ниже  [c.111]

    Указывалось на возможность практического использования биологической активности нефтяных СС, например, в качестве инсектицидов для борьбы с сосущими вредителями (клещами) в сельском хозяйстве [80]. Высокосернистые, богатые сульфидами нефти и получаемые из них мазуты, внесенные в почву до 3 т/га, заметно способствуют повышению урожайности и сокращают сроки созревания хлопчатника [593]. Сульфоксиды, полученные окислением сульфидов из фракции 200—400°С сборной нефти Южного Узбекистана, при предварительных испытаниях, проведенных в Институте фитопатологии растений, оказались активными десикантами (препаратами для предуборочного высушивания растений) и избирательными контактными дефолиантами (веществами, вызывающими опадение листьев) в отношении фасоли и горчицы [3]. Опубликовано множество патентов и авторских свидетельств на сельскохозяйственное применение многочисленных чистых синтетических СС, многие из которых содержатся в нефтях иди являются производными нефтяных компонентов [В], однако изучение возможностей использования в тех же целях нефтяного сырья ведется пока крайне слабо. [c.82]

    Как указывалось выше, с повышением температуры жидкофазного окисления уменьшается концентрация растворенного кислорода и [1 ] [Р02 ], поэтому при высокой температуре повышается роль антиокислителей, реагирующих с углеводородными радикалами. Антиокислительная активность фенолов и ароматических аминов с повышением температуры уменьшается. Можно предположить, что одной из причин уменьшения антиокислительной активности фенолов и ароматических аминов при высокой температуре является их взаимодействие в основном с пероксидными радикалами и гидропероксидами. Кроме того, концентрация гидропероксидов при высокой температуре мала, так как они разлагаются в момент образования. Хиноны настолько избирательно реагируют с алкильными радикалами, что их пространственно-затрудненные производные, например, 2,6-ди-7 /7ет -бутил-1,4-бензохи-нон, используются в качестве спиновых ловушек [225]. [c.177]

    Окисление этилена до окиси этилена (избирательность 70%) 155 000 17 ООО 523 39 27 1,76 0,4 0,08 3 [c.477]

    Особенно важное значение однородность катализатора имеет при осуществлении сложных необратимых процессов (окислительные аммонолиз и хлорирование, парциальное окисление углеводородов). Вариация соотношений констант разных реакций приводит к изменению избирательности и тепловыделения из-за резкого различия в тепловых эффектах основной и побочных реакций, что в свою очередь вызывает дальнейшее изменение избирательности процесса в слое катализатора возникают горячие пятна . [c.504]

    Физическая сущность эффекта секционирования прежде всего сводится к уменьшению интенсивности продольного перемепгавания частиц в целом по объему реактора. С увеличением числа ступеней и уменьшением доли обратного перемешивания секционированный аппарат все более приближается к реактору полного вытеснения (рис. 28 и 29) в нем увеличивается перепад концентраций и температур по высоте, уменьшается фактическое время пребывания частиц в реакторе и т. д. Очевидно, что целесообразность и необходимость секционирования, так же как и выбор числа секций и доли обратного перемешивания, должны прежде всего определяться из условия теоретически возможной конверсии и избирательности процесса. Это значит, что должен учитываться и механизм, и тип реакций, и соотношения их скоростей. Так, например, процессы жидкофазного окисления относятся к классу самораз-вивающихся процессов и могут протекать только в реакторах смешения. Если какие-либо из побочных реакций являются последовательными и при этом расходуются целевые продукты или промежуточные продукты, идущие на образование целевых, то можно ожидать, что секционирование приведет к увеличению избирательности процесса. [c.91]

    Окисление до любого из возможных промежуточных соединений является сильно экзотермической реакцией, поэтому не вполне ясно, почему окисление должно остановиться на какой-либо определенной стадии или почему полное окисление до двуокиси углерода и воды не протекает в качестве единственной реакции, как при несколько более высоких температурах. Баргойн и другие [1] изучали медленное некаталитическое окисление о-ксилола воздухом при несколько менее высоких температурах и при давлении 4,6 апг. Из их данных видно (табл. 2), что избирательность реакции чрезвычайно мала. Не опубликовано ни одного исследования по механизму или кинетике реакции окисления о-ксилола в условиях, применяемых для производства фталевого ангидрида. Такое исследование представляло бы очень большие трудности вследствие гетерогенности реакции, чрезвычайно малого времени реакции и высокой температуры. Однако, изучая основные и побочные продукты этой и подобных ей реакций, можно получить некоторое представление о ходе реакции. [c.11]

    В промышленных условиях окисление обычно ведут при температуре 325—375° и давлении от 8 до 60 ати. Процессы окисления осуществляются в паровой или жидкой фазе. Парофазное окисление может проводиться в присутствии ката(лизаторов или без них. В отличие от жидкофазных процессов для парофазных необходима более высокая температура, в связи с чем они характеризуются меньшей избирательностью, чем жндкофазные. [c.88]

    С другой стороны, повышение температуры интенсифицирует побочные реакции полимеризации и окисления (сульфирования) углеводородов в большей мере, чем реакцию алкнлирования. Поэтому избирательность реакции алкилирования с повышением температуры снижается. В результате увеличивается расход катализатора на реакцию, снижается выход алкилчта и ухудшае ся его качество (антидетонационная характеристика, стабильность и др.). Экономичность процесса уменьшается. [c.90]

    Основным процессом технологии производства нефтяных масел является их очистка избирательными растворителями, предназначенная для удаления из масля ных дистиллятов и деасфаль-тизатов смолистых веществ и полициклических ароматических и нафтено-ароматических углеводородов с короткими боковыми цепями, а также серосодержащих и металлорганических соединений. В этом процессе закладываются такие важнейшие эноплуа-тационные характеристики масел, ка вязкостно-температурные свойства и стабильность против окисления. Эффективно сть селективной очистки обусловлена. качеством сырья, природой и расходам растворителя, температурой процесса, кратностью обработки и конструктивными особенностями оформления блока экстракции. [c.90]

    Метод перцептрона был реализован для прогнозирования селективности ряда реакций одного класса на фиксированном катализаторе на примере окисления углеводородов молекулярным кислородом на одном катализаторе УзОд 50]. Избирательность реакцш для 50 пар реагентов и продуктов была оценена дихотомией по принадлежности к одному из трех классов (границы но выходам О—10, 10—50 и более 50%). В качестве априорных признаков были выбраны 46 свойств молекул реагента и продукта. Признаки характеризовали энергетику молекул (энергию связей), стереоизомерические свойства, квантовохимические и другие свойства молекул. Правильность отнесения составила для первого класса 100%, для второго — 70, для третьего — 95%. [c.87]

    Для удовлетворения первого требования иногда прибегают к особой операции обработки, называемой избирательным окислением, в условиях, когда металл М1 не окисляется, сплав подвергают очень медленному предЕ1арительпому окислению, что обеспечивает диффузию малой добавки Ме к поверхности сплава и образование защитного слоя. Повышения жаростойкости сплава иногда добиваются и без избирательного окисления (Ag + Ве Си + Ве), но требующиеся при этом добавки Ме бывают довольно большими. [c.108]

    Более перспективными являются процессы окислительной конверсии сернистых соединений, основанные на реакциях избирательного каталитического окисления их без предварительного извлечения из углеводородных газов. Разновидностью этих процессов являются адсорбционнокаталитические, которые основаны на селективном извлечении сернистых соединений твердыми адсорбентами-катализаторами с последующим превращением адсорбированных соединений (например, в элементную серу) и абсорбционно-каталитические процессы, основанные на ж>зд<о-фазных реакциях прямого окисления сернистых соединений. [c.42]

    Процесс микробиологической депарафинизации нефтяного сырья является новым направлением в нефтепереработке и нефтехимии. Этот процесс основан на способности некоторых микробов избирательно окислять парафиновые углеводороды, преимущественно нормального строения. Применение микроорганизмов для депарафинизации нефтяного сырья, для производства белкововитаминных концентратов (БВК), аминокислот, витаминов и других продуктов путем микробиологического синтеза на базе углеводородов основано на сходных биохимических процессах. Их сущность заключается в проникновении углеводородов в клетки микроорганизмов, способности их адаптироваться к углеводородному типу питания в начальной стадии окисления углеводородов. Современные представления о механизме усвоения углеводородов микроорганизмами изложены в специальной литературе. [c.191]

    На этой основе был предложен сопрял<енный метод окисления пропилена п этилбензола с одновременным получением двух ценных продуктов — оксида пропилена и стирола, однако выход оксида пропилена был невысоким. Лучшие результаты получены при сопряженном радикально-цепном окислении пропилена с ацетальдегидом с одновременным получением оксида пропилена и уксусной кислоты. В этом случае ацнлпероксидный радикал оказывается более избирательным в отношении атаки двойной связи (по сравнению с аллильным положением олефина) [c.438]


Смотреть страницы где упоминается термин Окисление избирательное: [c.237]    [c.201]    [c.102]    [c.127]    [c.95]    [c.119]    [c.123]    [c.125]    [c.70]    [c.125]    [c.366]    [c.526]    [c.92]    [c.330]   
Очистка технологических газов (1977) -- [ c.410 ]

Современная аналитическая химия (1977) -- [ c.30 , c.368 ]

Новые методы препаративной органической химии (1950) -- [ c.273 , c.342 ]




ПОИСК







© 2024 chem21.info Реклама на сайте