Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий гальванических пар

    Рассчитайте ЭДС и АС% гальванического элемента, работающего в стандартных условиях, образующегося при погружении алюминия, спаянного медью, в кислую среду. [c.153]

    Наиболее распространена защита алюминия и его сплавов от коррозии электрохимическим оксидированием, при котором окисление достигается действием электрического тока (см. работу 5 этого раздела). Алюминиевые изделия помещают в электролит в качестве анода, поэтому метод обработки носит название — анодное окисление, или анодирование. При анодировании на алюминии и его сплавах получают пленки толщиной 5—20 мк, а в специальных случаях до 200—300 мк. Анодирование применяется не только для защиты от коррозии и улучшения адгезии (сцепления) с лакокрасочными покрытиями, но и для декоративной отделки поверхности металла, получения на ней фотоизображений, повышения стойкости против истирания, получения поверхностного электро- и теплоизоляционного слоя и слоя высокой твердости. Твердость анодной окисной пленки на чистом алюминии 1500 кг/мм , т. е. выше, чем твердость закаленной инструментальной стали. С помощью анодных пленок алюминия изготовляют алюминиевые выпрямители и конденсаторы. В последнее время анодная окисная пленка используется как подслой для лучшего сцепления алюминия с гальваническими покрытиями (хромом, никелем, серебром и др.). [c.146]


    Вычислите э. д. с. алюминий-платинового гальванического элемента ири стандартных условиях. [c.183]

    Следовательно, железо, имеющее в морской воде коррозионный потенциал около —0,4 В, непригодно для использования в качестве протектора для катодно защищаемого алюминия, в отличие от цинка, который имеет более подходящий коррозионный потенциал, близкий —0,8 В. Для нержавеющей стали 18-8 критический потенциал в 3 % растворе Na l равен 0,21 В, для никеля — около 0,23 В. Следовательно, контакт этих металлов с имеющими соответствующую площадь электродами из железа или цинка может обеспечить им в морской воде эффективную катодную защиту, предупреждающую питтинговую коррозию. Элементы создаваемых конструкций (например, кораблей и шельфовых нефтедобывающих платформ) иногда специально проектируют таким образом, чтобы можно было успешно использовать гальванические пары такого рода. [c.227]

    Пример 2. Определите массу металла, подвергшегося коррозии в кислой среде при нарушении целостности медного покрытия на алюминии, если в течение 1 мин выделился водород объемом 0,09 л, измеренным при нормальных условиях. Какова максимальная сила тока, даваемая таким гальваническим элементом  [c.152]

    Металлический алюминий служит в основном для производства сплавов. Сплавы алюминия менее устойчивы к коррозии из-за возникновения гальванических микроэлементов в местах включений примесей. Алюминий идет на производство кабелей, фольги, зеркал, серебристой краски. Способность алюминия восстанавливать металлы из оксидов при высоких температурах послужила основой метода алюмотермии, т. е. восстановления тугоплавких металлов, например хрома или марганца, из их оксидов  [c.152]

    Наряду с научным интересом гальванические элементы имеют чрезвычайно большое техническое значение. Они служат, с одной стороны, как источники тока (например, аккумуляторы), с другой стороны, для проведения химических реакций, которые осуществляются трудно или в других условиях вообще не осуществляются. Известными примерами таких процессов, которые технически проводят в большом масштабе, является электролиз хлоридов щелочных металлов, электролитическое производство алюминия и электролитическое осаждение металлов в виде поверхностных слоев (гальванические покрытия). [c.272]

    Применение цинка очень разнообразно. Значительная часть его идет для нанесения покрытий на железные и стальные изделии, предназначенные для работы в атмосферных условиях или в воде. При этом цинковые покрытия в течение миогих лет хорошо защищают основной металл от коррозии. Однако в условиях высокой влажности воздуха при значительных колебаниях температуры, а также в морской воде цинковые покрытия неэффективны. Широкое промышленное использование имеют сплавы цинка с алюминием, медью и магнием. С медью цинк образует важную группу сплавов — латуни (см. стр. 571). Значительное количество цинка расходуется для изготовления гальванических элементов. [c.621]


    ЖЕРТВЕННЫЕ АНОДЫ. Если вспомогательный анод изготовлен из металла более активного (в соответствии с электрохимическим рядом напряжений), чем защищаемый, то в гальваническом элементе протекает ток — от электрода к защищаемому объекту. Источник приложенного тока (выпрямитель) можно не использовать, а электрод в этом случае называют протектором (рис. 12.2). В качестве протекторов для катодной защиты используют сплавы на основе магния или алюминия, реже — цинка. Протекторы, по существу, служат портативными источниками электроэнергии. Они особенно полезны, когда имеются трудности с подачей электроэнергии или когда сооружать специальную линию электропередачи нецелесообразно или неэкономично. Разность потенциалов разомкнутой цепи магния и стали составляет примерно 1 В (в морской воде магний имеет Е = —1,3 В), так что одним анодом может быть защищен только ограниченный участок трубопровода, особенно в грунтах с высоким удельным сопротивлением. Столь небольшая разность потенциалов иногда [c.218]

    При покрытии металлов, более активных, чем медь (железо, алюминий), они способны непосредственно вытеснять медь из растворов ее солей без электролиза — контактным путем. Образующиеся при этом осадки меди, несплошные и слабо сцепленные с металлической основой, препятствуют образованию собственно гальванических покрытий. Поэтому состав электролита для меднения имеет особенно большое значение. [c.185]

    Магний и алюминий - активные металлы. Будет ли у гальванического элемента из этих днух металлов высокий потенциал Почему да или почему нет  [c.537]

    Большое значение для скорости коррозии алюминий и его сплавов имеет также контактная коррозия. При наличии в конструкции контакта разнородных металлов и коррозионной среды возникает гальваническая макропара. Алюминий и его сплавы в таких макропарах в большинстве случаев служат анодом и подвергаются усиленной коррозии. Лишь в том случае, когда потенциал алюминия, находящийся в контакте с каким-либо металлом, отвечает пассивной области, контакт не влияет на стойкость алюминия. Так, анодирование дюралюминия с последующим наполнением сильно облагораживает потенциал сплава и делает его катодным по отношению к большинству контактирующих металлов. Даже такой электроположительный сплав, как латунь Л62, в контакте с анодированным и пропитанным хромпиком дюралюминием становится анодом. [c.59]

    Многие металлы, в том числе и алюминий, не могут быть осаждены гальваническим способом из водных растворов своих солей вследствие высокого отрицательного [c.81]

    Алюминий склонен к образованию питтинга в водах, содержащих ионы С1 . Это особенно сильно проявляется в щелях или застойных зонах, где пассивность нарушается в результате образования элементов дифференциальной аэрации. Механизм питтингообразования аналогичен механизму для нержавеющих сталей, описанному в разд. 18.4.1 и в этом случае наблюдается критический потенциал, ниже которого питтинг не возникает [4, 5]. При наличии в воде следов ионов Си + (даже в количестве 0,1 мг/л) или Ре + они реагируют с алюминием, и на отдельных участках отлагаются металлическая медь или железо. Эти металлы выполняют роль катодов, сдвигая коррозионный потенциал в положительном направлении до значения критического потенциала питтингообразования. Таким образом, они стимулируют как возникновение питтинга, так и его рост под действием гальванических [c.342]

    При работе гальванического элемента, образовавшегося при коррозии алюминия, находящегося в контакте с железом в среде влажного воздуха, за 1 час работы на железном катоде восстановился кислород объемом 0,025 л. Определите, насколько уменьшилась при этом масса алюминиевого электрода и чему равна сила тока, прошедшего во внешней цепи гальванического элемента. [c.154]

    В первой части книги рассматривается производство химических источников электроэнергии (гальванических элементов, свинцовых и щелочных аккумуляторов), во второй — технология получения водорода, кислорода, хлора, щелочей, некоторых кислот, солей и органических соединений. Третья часть посвящена технологии электрометаллургических процессов, четвертая — гальванотехнике и пятая часть — производству металлов (алюминия, магния, натрия и др.) электролизом рас-п лав в. [c.2]

    Одним из металлов, электрохимическое осаждение которого представляет интерес для современной техники, является алюминий. Стандартный потенциал алюминия (—1,66 В) значительно отрицательнее потенциала выделения водорода, поэтому металл не может быть выделен путем электролиза водных растворов, что препятствует использованию алюминия как гальванического покрытия. [c.109]

    В агрессивных растворах, в морской воде, в почве применяют электрохимический метод защиты. Одной из разновидностей этого метода является метод протекторной защиты, который применяют в нейтральных средах. К стальной конструк-дии 1 присоединяют пластины из чистого цинка 2 или сплава цинка с алюминием (рис. 92). При этом образуются макро-гальванические элементы, в которых цинк (или сплав цинка) выполняет функцию анода, а конструкция, которую защищают от коррозии, становится катодом. При этом цинковые пластины (протектор) растворяются, а коррозия конструкции (катода) вследствие сдвига электродного потенциала в более отрицательную область прекращается или сильно уменьшается. Другая разновидность электрохимического метода — катодная защита. Конструкцию 1 для защиты от коррозии присоединяют к отрицательному полюсу генератора постоянного тока, положительный полюс — к куску железа 2 (рис. 93). Это сдвигает потенциал защищаемой конструкции в область более отрицательных значений, что приводит к сильному торможению коррозии. [c.376]


    Используя гальванический элемент в качестве источника тока, убедиться в электроизоляционных свойствах анодной окисной пленки на алюминии (опыт провести с помощью преподавателя ). [c.148]

    Электрохимические процессы широко используются в современной технике, в аналитической химии, в научных исследованиях. Так, электрохимическим методом в промышленности получают металлы (алюминий, цинк, никель, магний, натрий, литий, бериллий и др.), хлор, гидроксид натрия, водород, кислород, ряд органических соединений, рафинируют металлы (медь, алюминий). Электрохимические методы широко используют для нанесения металлических покрытий, для полирования, фрезерования и сверления металлов. С каждым днем все больше применяются химические источники электрической энергии — гальванические элементы и аккумуляторы — в технике и научных лабораториях. В аналитической практике и научных исследованиях широко применяют такие электрохимические методы исследования, как потенциометрический, полярографический и т. п. Электрохимические системы в виде так называемых хемотронных приборов с успехом применяют в электронике и вычислительной технике. [c.313]

    Железо и алюминий. Гальваническая пара алюминий— железо в рассоле хлористого кальция успешно защищается введением 2,4 г/л Na rOj [21]. Без замедлителя алюминий гальванически защищает железо. Но в технической водопроводной воде добавка Naj rO переносит коррозию с алюминия на сталь, находящуюся с ним в контакте [24]. В рассоле хлористого кальция при низких температурах Naj rgO хорошо предохраняет от коррозии как сталь, так и алюминий. [c.298]

    Предложите гальванические элементы для определения концентраций ионов цинка, железа, алюминия, магния, олова, свинца-и др. Проверьте их работу. [c.338]

    Образующиеся при электролизе вещества либо выделяются на электродах, либо вступают в химическое взаимодействие с растворителем или растворенным веществом. Электролиз растворов и рас-сплавов широко применяется в промышленности для получения щелочей, солей, различных органических веществ, магния, алюминия, для нанесения гальванических покрытий и т. д. Таким путем удается получить более чистые (по сравнению с химическими методами синтеза) и сравнительно дешевые вещества. Метод электролиза применяется в аналитической практике для количественного определения различных веществ в растворах. [c.266]

    Записать в ионной форме гальванические цепи для определения электродных потенциалов металлов по водородному электроду а) цинка б) кобальта в) меди и г) алюминия. Для каждой из этих цепей указать положительный и отрицательный полюсы, а также направление потока электронов по металлическому проводнику, образующему внешнюю цепь гальванического элемента. [c.134]

    Определите э. д. с. алюминий-медного гальванического элемента при стандартных условиях (Сд13+ = С , ,2+ = = 1 г-ион/л). [c.184]

    Применение. Так как на цинк при обычных условиях не действуют ни кислород воздуха, ни вода, то основная масса цинка расходуется на защитные покрытия железных листов и стальных изделий. Цинк применяют для получения технически важных сплавов с медью (латуни), алюминием и никелем, а также для производства цинково-угольных гальванических элементов, которые используют в батареях разного назначения. [c.108]

    Легкость, с которой алюминийалкилы выделяют металлический алюминий, мол<ет быть использована для гальваностегии, нанесения металлических покрытий газовым способрм, а также рафинирования металлического алюминия. Для осаждения алюминия гальваническим способом предложено использовать ванну с расплавом алюминийалкилидов, алкилалюминийгидридов или комплексов с натрийалкилами или галогенидами четвертичных аммониевых оснований [c.80]

    Коррозия. Дополнительные источники коррозии — кислые осадки ]1а поверхности металла (гальваническое действие), эрозионный износ поверхности металлов, а также слабый контроль за кислотностью раствора. Крупной проблемой является коррозия от напряженности металла, которая обычно возникает при неудачном выборе материала для изготовления аппаратуры. Если установка плохо запроектирована, то проблему коррозии не решает даже добавление в раствор соответствующих ингибиторов, хотя в этом часто возникает необходимость. Для изготовления аппаратуры можно применять обычную углеродистую сталь при условии, что на установке будет проводиться строгий контроль. В случае повышенной коррозии рекомендуется применять сталь марок 304 и 316. Имеются сообщения об успешном применении для изготовления теплообменников стали марки 7072, плакированной алюминием. Испытывались также стали, плакированные другими металлами и покрытые пластиком. О результатах применения пластикового покрытия нет единого мнения. Имеются сообщения об успешном применении и отрицательные выводы, хотя дело кажется довольно простым изолировать металл пластиком и принять меры к исключению течи (проколов) в этой изоляции. Добавка 7 г КазСОд на 1 л раствора иногда способствует уменьшению коррозии. Для поглощения кислорода в раствор добавляется гидразин. [c.278]

    В пассивном состоянии электродный потенциал алюминия облагораживается. Так, нормальный равновесный потенциал алюминия равен — 1,67В, а в 0,5 н. МаС1 его потенциал становится равным —0,57 В, т. е. сдвигается в положительную сторону более чем на 1 В. Удаление окисной пленки зачисткой уменьшает потенциал до —1,221 В. Пассивная пленка большей частью состоит из А12О3 или ЛЬОз-пНаО и имеет в зависимости от условий образования толщину от 5 до 100 нм. Однако состав пленки может быть также другим в зависимости от веществ, содержащихся в окислителе. Толщина защитной пленки неодинакова, и в ней имеются поры. В порах протекает анодный процесс растворения алюминия, а катодный процесс протекает на тонких участках пленки, порядка 5—10 нм, которые обладают достаточно малым электрическим сопротивлением. Участки пленки большей толщины практически совсем не пропускают ни ионов алюминия, ни электронов, поэтому эти участки изолируют металл от внешней среды. Обычно поры составляют. малую часть всей поверхности, в связи с этим в гальванической паре пленка— пора алюминий в порах значительно поляризуется. При этом установившийся стационарный потенциал существенно отличается от нормального. [c.54]

    Известно, что в гальванической паре разрушению от электрохимической коррозии подвергается анод. Этим обстоятельством иногда пользуются для защиты аппаратуры от коррозии. Если, например, в железный аппарат, где есть электролит, поместить цинковую пластинку, то именно она, не железная стенка аппарата, станет анодом и будет разрушаться, а железо аппарата будет со-лраняться. Если же взамен цинковой пластнши поместить никелевую, свинцовую или медную пластинку, то анодом окажется уже железо аппарата и его коррозия значительно усилится. Следовательно, подбирая гальваническую пару так, чтобы стенка аппарата была катодом, а не анодом, можно уменьшить ее электрохимическую коррозию. Такой способ защиты от коррозии называется протекторной защитой. Протекторы йзготовляют из цинка, алюминия, магния и сплавов, анодных по отношению к стали. Протекторная защита проста в эксплуатации и не требует постоянного обслуживания. [c.175]

    Из цветных металлов применяют алюминий, медь, никель, титан, 1,инк, олово, свинец, их сплавы. Используют также металлические защитные покрытия, наносимые различными пo oбavи электролитическим (гальванические покрытия), металлизацией (покрытие расплавленным металлом), плакированием (,1вухслойиые металлы), погружением (горячие покрытия) и др. Их применение ограничено, так как покрытия отличаются значительной пористостью. [c.283]

    Высокая удельная поверхность не всегда нужна, особенно для носителей. Кроме бифункционального катализа, где носитель играет прямую и полезную каталитическую роль, обычно предполагается, что носитель неактивен. Однако такие широко используемые носителп, как оксиды алюминия и кремния, часто обладают некоторой каталитической активностью, которая может быть нежелательна. Уменьшить ее можно селективным отравлением ненужных центров, но на практике это иногда трудно сделать. Для того чтобы снизить удельную поверхность носителя, не изменяя дисперсности активной фазы, можно предварительно спечь носитель, протравить его поверхность и затем уже пропитать активным компонентом. Плотные частицы можно покрыть, используя парофазные реакции, гальванические методики, распыление в радиочастотном разряде и другие способы, но при этом трудно добиться высокой дисперсности активной фазы. Часто приходится искать компромиссное решение и допускать некоторое снижение селективности, вызванное действием поверхности носителя. Если же селективность необходимо сохранить, то в некоторых случаях отказываются от носителей. [c.28]

    Цинк применяют для изготовления технически важных сп.та-вов с медью (латуни, томпак), алюминием, никелем, а также в производстве цинково-угольных гальванических элементов (ч.те-менты Лекланше). Их используют в батареях карма1итых фонарей, в телефонной, телеграфной и радиотехнике. Цинковая пыль [c.333]

    Достоинство покрытий протекторного типа (например, цинка или кадмия, электроосажденных на сталь) в том, что основной металл катодно защищен и на тех участках, где на покрытии есть дефекты. В одном из наиболее ранних исследований коррозионной усталости, проведенном Б. Хэйгом в 1916 г. в связи с преждевременным разрушением стальных буксировочных тросов, контактирующих с морской водой, было показано, что гальванические покрытия заметно увеличивают срок службы тросов [77]. Цинковые покрытия по алюминию эффективны, в отличие от кадмиевых [c.161]

    Создание гальванической пары из мартенситной нержавеющей стали и электроотрицз[тельного металла также может приводить к разрушениям в результате выделения водорода на катодной поверхности стали. Подобные явления наблюдали при лабораторных испытаниях [52]. Как указывалось в разд. 7.4, на практике отмечали случаи разрушения судовых винтов из мартенситной нержавеющей стали. Эти винты самопроизвольно растрескивались вскоре после того, как их приводили в контакт с алюминием в условиях прибрежной атмосферы. Аналогичным образом вели себя винты из упрочненной мартенситной нержавеющей стали, находившиеся в контакте со стальным корпусом корабля они разрушались вскоре после начала эксплуатации. Некоторые марки аустенитных нержавеющих сталей 18-8, подвергнутые [c.319]

    Даже если скорость коррозии медных труб не слишком высока и они эксплуатируются достаточно долгое время, то продукты коррозии меди и медных сплавов, которые образуютсяМ1ри наличии в воде угольной и других кислот, могут вызывать окрашивание сантехнического оборудования. При контакте с такой водой усиливается коррозия железа, оцинкованной стали и алюминия. Это связано с протеканием реакции замещения, при которой металлическая медь осаждается на основном металле и образуются многочисленные небольшие гальванические элементы. При обработке кислых вод или вод с отрицательным значением индекса насыщения известью или силикатом натрия скорость коррозии падает до достаточно низких значений, чтобы прекратилось окрашивание и усиление коррозии других металлов, за исключением алюминия. Он чувствителен к присутствию в растворе чрезвычайно малых количеств ионов Си +, и обычная обработка воды не способна уменьшить содержание этих ионов до безопасного уровня. Ввиду токсичности растворенной меди служба здравоохранения США установила значение ее предельно допустимой концентрации в питьевой воде, равное 1 мг/л [7]. [c.328]

    Влияние легирующих добавок в этих средах зачастую иное, чем в водных растворах- возникающие гальванические пары и внешняя поляризация не влияют на скорость коррозии скорости коррозии одинаковы в паровой фазе и в кипящей жидкости. Все эти факты являются сильными аргументами в пользу того, что коррозия протекает не по электрохимическому механизму . Механизм процесса с участием свободных радикалов подтверждается также данными по аналитическому обнаружению радикалов - lg, появление которых, видимо, приводит к красному окрашиванию I4 при взаимодействии его с алюминием. Об этом же свидетельствует легкость, G которой добавки многих органических веществ подавляют реакцию (свободные радикалы очень реакционноспособны). [c.349]

    Потенциал кадмия во многих средах близок потенциалу алюминия, поэтому кадмированные сталью винты, болты, детали и пр. можно применять в непосредственном контакте с алюминием. Считается, что можно с успехом использовать и оловянные покрытия. Цинк имеет несколько отличное значение потенциала, однако его также можно применять в большинстве случаев. В контакте с алюминием цинк является анодом и, следовательно, катодно защищает алюминий против инициации питтинга в нейтральных и слабокислых средах (см. разд. 12.1.6). Однако в щелочах происходит перемена полярности, и цинк ускоряет коррозию алюминия. Магний является анодом по отношению к алюминию, но при контакте этих металлов (например, в морской воде) возникает столь большая разность потенциалов и протекает столь большой ток, что алюминий может оказаться катодно переза-щищенным и вследствие этого будет разрушаться. Алюминий корродирует в меньшей степени, если он легирован магнием. Показано, что алюминий высокой чистоты может находиться в контакте с магнием без вреда для обоих металлов [24], поскольку в отсутствие примесей железа, меди и никеля, действующих как эффективные катоды, гальванический ток в этой паре невелик. [c.351]

    Рядовой пековый кокс применяется для анодов и катодов ванн для электролиза алюминия, электродов гальванических батарей и электрощеток. [c.96]

    С помощью электролиза получают в больших количествах наиболее реакционноспособные вещества - магний, алюминий, галогены, щелочи и др. Иные методы получения этих веществ в принципе возможны, но они экономически менее выгодны. Электролиз применяют также для очистки (рафинирования) металлов, для получения гальванических покрытий (гальвансчггегия), копий произведений искусства (пшьванопластика), для получения изделий строго определенных размеров из твердых сплавов (размерная обработка) и т. д. [c.226]


Библиография для Алюминий гальванических пар: [c.315]   
Смотреть страницы где упоминается термин Алюминий гальванических пар: [c.239]    [c.379]    [c.950]    [c.405]    [c.425]    [c.330]   
Морская коррозия (1983) -- [ c.190 ]




ПОИСК





Смотрите так же термины и статьи:

Гальванические покрытия на алюминий

Нанесение гальванических покрытий на алюминий, магний, цинк и их сплавы

Спектральное определение алюминия агломератах электролите гальванических ванн

Спектральное определение алюминия электролите гальванических ванн

гальванические



© 2025 chem21.info Реклама на сайте