Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Градиент концентрации при диффузии

    Существуют следующие мембранные методы микрофильтра-цня — процесс разделения коллоидных растворов и взвесей под действием давления ультрафильтрация — разделение жидких смесей под действием давления обратный осмос — разделение жидких растворов путем проникновения через полупроницаемую мембрану растворителя под действием приложенного к раствору давления, превышающего его осмотическое давление диализ — разделение в результате различия скоростей диффузии веществ через мембрану, проходящее при наличии градиента концентрации электродиализ — процесс прохождения ионов растворенного вещества через мембрану под действием электрического ноля. [c.106]


    Скорость массопереноса (процесса диффузии пропорциональна градиенту концентрации С —С , где — концентрация реактанта в объеме, то есть [c.96]

    Обычно / <1 И миграция не может компенсировать убыли концентрации ионов серебра в результате их разряда. Связанное с этим уменьшение концентрации в прикатодном слое до Ск по сравнению с ее значением со в глубине раствора создает градиент концентрации и приводит к появлению диффузии, протекающей в направлении раствор — электрод со скоростью [c.304]

    В общем случае величина потока /С/зависит от нескольких обобщенных сил X/ . Например, поток вещества зависит от градиента концентрации (диффузия), от градиента плотности (конвекция) и т. д. При небольших отклонениях от равновесия (незначительная величина сил Хк) поток K есть в общем случае линейная функция всех сил Xk  [c.113]

    При нестационарных диффузионных процессах значение коэффициента массоотдачи меняется со временем. В начальный момент, когда у стенки имеется очень крутой градиент концентрации, диффузия происходит весьма интенсивно в дальнейшем устанавливается плавное распределение концентрапий и процесс диффузии замедляется (см. формулы (II, 102), (II, 107) и (II, 108). [c.72]

    Гомогенные системы в воде представляют собой истинные (молекулярные и ионные) растворы различных веществ. Истинные растворы являются термодинамически устойчивыми системами и могут существовать без изменений сколь угодно долго. Несмотря на большое разнообразие соединений, образующих с водой растворы, многие свойства оказываются общими для всех растворов. Так, все растворы электролитов обладают способностью проводить электрический ток, а количественные зависимости, наблюдаемые при электролизе, справедливы для любых растворов. Направленное движение ионов или молекул в растворах происходит не только под влиянием разности потенциалов, но и вследствие градиента концентрации (диффузия). Диффузионный поток растворенного вещества при этом направлен из области с большей концентрацией в область с меньшей концентрацией, а поток растворителя — в обратном направлении. Для всех растворов нелетучих веществ в летучих растворителях характерна более высокая по сравнению с чистым растворителем температура кипения и более низкая температура замерзания. Повышение температуры кипения и понижение температуры замерзания будет тем большим, чем больше концентрация раствора. [c.53]

    Хотя для описания кинетики цепных разветвленных взрывных реакций есть различные механизмы, совершенно отличные от чисто тепловых взрывов, формально зависимости пределов воспламенения от температуры совпадают. Механизм распространения разветвленного взрыва в виде медленной волны горения должен быть связан скорее о диффузией радикалов, ведущих цепь, а не с диффузией тепла. Зельдович [54] показал, что в первом приближении можно считать, что градиенты концентрации и температуры пропорциональны друг другу. В этих условиях формальные уравнения для распространения волны будут одинаковы для обоих механизмов взрыва и совершенно независимо от цепного механизма градиенты концентрации и температур в пламени будут пропорциональны друг другу во всех точках. С физической точки зрения это вполне вероятный результат, потому что наиболее резкие перепады температур должны проявляться там, где скорость реакции наибольшая, что в свою очередь вызывает образование максимальных концентраций продуктов. [c.399]


    Если перейти к большему по величине общему давлению ( 10 аг), то перемещение газа уже в значительной степени определяется процессом диффузии. В том случае, когда в системе имеется постоянный по величине градиент концентраций, диффузия с увеличением давления замедляется. Если же давление превышает 3 ат, то наряду с диффузией все большее значение приобретает конвекция .  [c.24]

    В идеальном ионном кристалле все ионы жестко локализованы в узлах, где они совершают только тепловые колебательные движения перенос иона из одного узла в другой под влиянием электростатического поля (миграция) или градиента концентрации (диффузия), в таком кристалле невозможен. Поэтому первоначально явление ионной проводимости в твердых ионных кристаллах было непонятным. [c.219]

    Aft. Например, поток вещества зависит от градиента концентрации (диффузия). I/ от градиента плотности (конвекция) и т. д. При небольших отклонениях от равновесия (незначительная величина сил Xk) поток Ki есть в общем случае [c.107]

    Диализ Симметричная микропористая мембрана с радиусом пор от 0,1 до 10 мкм Градиент концентрации Диффузия в конвективном свободном слое Отделение солей и микро-растворенных веществ от макромолекулярных растворов [c.210]

    Первое условие остается таким же, как и в предыдущем случае, т. е. t = 0, JoO, с = Со. Второе условие формулируется, однако, иначе, а именно, как постоянство во времени градиента коцентрации, или, для данного электролита, как постоянство произведения коэффициента диффузии на градиент концентрации  [c.148]

    Молекулярная диффузия представляет собой перемещение частиц под действием градиента химического потенциала (1ц/с1х, или приближенно — градиента концентрации с1с/с1х,. возникающего в растворе в результате его качественной или количественной неоднородности. Молекулярная диффузия -была рассмотрена в гл. 6, где были выведены законы Фика, описывающие этот процесс. [c.302]

    В очень узких порах молекулы сталкиваются со стенками чаще, чем между собой. При столкновении молекула мгновенно адсорбируется на стенке и тут же десорбируется, отлетая под углом, не зависящим от угла, под которым она подлетела к стенке. В этом случае, как и раньше, суммарный поток вещества можно представить в виде произведения коэффициента диффузии на градиент концентрации. [c.131]

    Диффузия реагентов, первоначально присутствующих в фазе 2, и (или) продуктов реакции в пределах собственно фазы 2, обусловленная градиентом концентраций за счет протекания химической реакции. [c.13]

    Кратко рассмотрим системы газ — твердое тело с наличием реакции в пределах твердой фазы. Такие системы представляют интерес в каталитических реакциях, когда катализатор выступает в виде микропористого твердого тела, через которое могут мигрировать реагенты и реакционные продукты под влиянием градиента концентрации, следуя закону диффузии Фика. Эффективный коэффициент диффузии зависит от механизма диффузии через поры (которая может быть обычной газовой диффузией или кнудсенов-ской диффузней, сопровождающейся мобильностью адсорбированных слоев), а также от геометрии пор. Проблемы оценки корректной величины эквивалентного коэффициента диффузии по известным значениям диаметров пор и их геометрии обсуждались в некоторых аспектах Франк-Каменецким [11], а также в работах [12-15]. [c.46]

    Диффузия. Когда в газовой, жидкой или твердой фазе возникает разность концентраций, то процесс самопроизвольного их выравнивания называется диффузией. Условие возникновения диффузии — появление градиента концентраций в направлении движения диффундирующего компонента. На основе кинетической теории газов можно вывести уравнение скорости диффузии компонента А относительно компонента В. В случае однонаправленной диффузии один из компонентов диффундирует, а другой неподви- [c.244]

    Фактор пропорциональности D называют коэффициентом диффузии. Минус перед правой частью уравнения (6-14) указывает на то, что поток идет в направлении от места с высшей концентрацией к месту с низшей концентрацией (рис. 6-3). Если рассмотреть диффузию в направлении всех трех координатных осей, то в векторной форме этот закон можно сформулировать так плотность диффузионного потока пропорциональна градиенту концентрации  [c.63]

    Первый член в скобках д М1/Nt)/дr — просто градиент концентрации частиц типа 1 он дает обычное уравнение для диффузии массы при постоянных температуре и давлении. [c.171]

    Разделение углеводородов на группы й- 20 различной цикличности. Если смесь, помещенную между двумя горизонтальными поверхностями, подвергнуть воздействию температурного градиента, направленного по вертикали, то будет происходить перенос тепла (теплопередача) и массы (массопередача). В большинстве случаев перенос массы происходит по-разному для различных компонентов смеси. В результате этого создается градиент концентрации по вертикали, который в свою очередь способствует переносу массы, т. е. нормальной концентрационной диффузии. Максимальная разность между концентрациями вблизи горячей и холодной поверхностей характеризует термодиффузионный эффект. [c.391]

    При выводе первого закона Фика предполагалось, что градиент концентрации не меняется е течением времени и не зависит от величины х. Первый закон Фика относится, таким образом, к процессу стационарной диффузии. Однако диффузия далеко не всегда протекает в условиях стационарности. Так, например, если в трубке, изображенной на рис. 6.1, слева на-.ходнтея твердое вещество, способное растворяться в жидкости, наполняюще трубку, то концентрация раствора будет изменяться и в пространстве и во времени. Прн этом концентрация, повыщаясь, достигает предельного значения, соответствующего растворимости вещества, а фронт насыщенного раствора передвигается слева направо. [c.146]


    Пример 1 /-2. Реакционная смесь протекает через трубу поперечного сечения А с постоянной скоростью и. Ввиду того, что в осевом направлении существует градиент концентрации, происходит также диффузия реагентов в направлении оси в соответствии с законом Фика  [c.118]

    Химическая реакция протекает сравнительно быстро. Действительно, ни в одной из подобных систем, изученных экспериментально до настоящего времени, скорость реакции не является лимитирующей, но хорошо известны примеры, когда стадией, определяющей скорость процесса, служит диффузия в жидкой или твердой фазе. Известны также случаи, где оба эти фактора представляют собой величины одинакового порядка. Технологический расчет ионообменников отчасти осложнен тем, что процесс проводится обычно в неподвижном слое и поэтому протекает нестационарно при непрерывно изменяющихся градиентах концентраций . [c.177]

    Коэффициент диффузии. Величина коэффициента диффузии Ос, отнесенного к градиенту концентраций при =0°С и давлении окружающей среды В=760 мм рт. ст., приведена в табл. 17. [c.112]

    Для изотермических условий испарения существует следующая зависимость между коэффициентом диффузии Ор(0), отнесенным к градиенту парциального давления (в м/ч), и коэффициентом диффузии О ), отнесенным к градиенту концентраций (в м /ч). [c.113]

    Так, поток диффузии вещества линейно связан с термическим градиентом dT/dx и другими (а не только с градиентом концентрации d /dx)  [c.113]

    При образовании зародыша новой фазы также наблюдается диффузия в направлении, обратном направлению градиента концентрации. Диффузию, увеличиваюш ую концентрацию какого-либо компонента в определенных участках кристаллической решетки, называют восходящей. [c.127]

    Такой перенос может быть осуществлен против градиента концентрации. Диффузия стремится противодействовать эффекту элек-тродиализного переноса ионов против градиента концентрации, и это снижает эффективность процесса. Кроме того, осмос и электроосмос снижают эффективность электродиализа, хотя на практике в большинстве случаев влияние этих процессов незначительно. [c.8]

    Диффузия так как теплопроводность и вязкость, отиосит- я к так называемым процессам молекулярного переноса. Эти яв-тения возникают в газе или жидкости, когда в них имеются градиенты концентраций (диффузия), температуры (теплопроводность) 1ЛИ скорости направленного движения (вязкость). Указанные процессы являются необратимыми и не поддаются тердюдинамнческо- у расчету. [c.143]

    При градиенте концентрации, равном единице, первое слагаемое в правой части уравнения совпадает с коэффициентом диффузии Di, т. е. равно числу / = л ионов, диффундирующих за единицу вре-мснп через единичное сечение размерность коэффициента диффузии [м- -с >] [c.140]

    Си, так как рассматривается катод гый -процесс). Таким образом, градиент концентрации, определяющий скорость диффузии, равен (с о—Ск)/б. Наконец, в этой теории принимается, что концентрации и активности совпадают (хотя это предположение и не делалось ее авторами, поскольку в те годы еще не существовало понятия активности) и что числа нерепоса не зависят от состава раствора. Последнее допущение оправдывается лищь в случае растворов, содержащих бинарный электролит, подвижности ионов которого почти одинаковы. Основные положения теории диффузионного перенапряжения Нернста—Бруннера целесообразно рассмотреть поэтому на примере системы [c.304]

    Д. я больншпства растворов v имеет порядок 10 м -с . Передача растворенного вещества от слоя к слою, т. е. его диффузия, определяется коэффициентом диффузии D порядок которого составляет обычно 10 м -с-. Таким образом, передача движения является более эффективной, чем передача растворенного вещества диффузней, и поэтому при сопоставимых значениях DuwD градиент скорости может быть меньше, чем градиент концентрации, т. е. толщина слоя Прандтля должна быть больше, чем толщина диффузионного слоя брг>б. Существует следующее соотношение между этими величинами  [c.311]

    Некоторые практически важные случаи конвективной диффузии. Для толщины диффузионного слоя в условиях естественной конвекции (наличие градиента концентрации, а следовательно, и градиента плотности раствора) при вертикально расположенном ттластинчатом электроде — случай, весьма часто встречающийся в электрохимической практике (стационарные ванны, аккумуляторы), было выведено уравнение [c.312]

    Уравнения (15.68) и (15.69) внешне не отличаются от уравнения (15.6), выведенного ранее в предположении замедленности диффузии. В обоих случаях раствор вблизи электрода может оказаться полностью освобожденным от восстанавливаемых частиц, что резко увеличивает поляризацию (т1- -с ) и устанавливает предел росту плотности тока (/->/г)- В условиях диффузионных ограничений компенсация разрядившихся частиц происходит за счет их постушления из толщи раствора под действием градиента концентрации, возникающего внутри диффузионного слоя б. Предельная диффузионная плотность тока отвечает в зтом случае максимально возможному градиенту концентрации и является функцией коэффициентов диффузии реагирующих частиц. В условиях замедленности чисто химического превращения восполнение разряжающихся частиц совершается за счет химической реакции, протекающей в непосредственной близости от электрода или на его поверхности. Предельная реакционная плотность тока /г должна быть функцией констант скорости соотнетствующих химических превращений. Определение величин /г н установление закономерностей химического перенапряжения дает основу для изучения кинетики быстрых химических )еакций электрохимическими методами. [c.324]

    До сих пор еще пе ясно, какой из вариантов является наиболее вероятным все же предпочтение, по-видимому, следует отдать двум иоследним. Существование адатомов (или адионов) было доказано рядом независимых методов, которые позволили также определить их концентрацию. Поверхностная диффузия частиц должна играть наибольшую роль в тех случаях, когда участки роста (дислокации, двухмерные зародыши) занимают лишь незначительную долю поверхности. Тогда, вследствие большого расстояния Ха, на которое должны переместиться адсорбированные частицы до места их включения в решетку, градиент концентрации Асив.с1х,1, а следовательно, и скорость поверхностной диффузии будут малы. Поверхностная диффузия может оказаться замедленной стадией при электроосаж-деыии металлов. Эти условия реализуются на бездефектных гранях (или гранях с малым числом дефектов) и в области низких поляризаций (малые илотности тока), когда число зародышей невелико. [c.342]

    При поаы1иении поляризации доля активной поверхности увеличивается в результате возрастания числа двухмерных зародышей и перехода ранее неактивных участков роста в активные (депассивация). Кроме того, при смещеини потегщиала в отрицательную сторону повышается концентрация частиц. Все это приводит к увеличению градиента концентрации, в результате чего поверхностная диффузия перестает быть замедленной стадией. Скорость процесса осаждения начнет лимитироваться иной стадией, наиболее вероятно — стадией переноса заряда. При еще больших поля- [c.342]

    Для сравнения необходимо оценить величины и >2. Коэффициент диффузии СОг в воде хорошо известен и составляет при 20° С , 7- 0- см /сек. Возникают некоторые осложнения при нахождении >2, потому что диффузия ионов не просто определяется законом Фика, так как поток каждого иона зависит от градиента концентраций всех присутствующих ионов [13]. Учет этого эффекта в химической абсорбции рассматривался Шервудом и Вэйем [14], которые рассчитали градиенты концентраций всех составляющих ионов по графикам профилей концентраций, полученным на основе модели пленочной теории. Найсинг использовал ту же самую методику, но вводил полученные таким образом значения />2 в уравнения пенетрационной теории. При 20° С и конечном разбавлении величина Лг составляет 2,84 0 см /сек, для растворов ЫаОН и 2,76 0 см /сек для растворов КОН. Обе величины почти одинаковы, таким образом можно сказать, что как для раствора ЫаОН, так и для раствора КОН (01/02) = 0,77, а Ог/Д = 0,64. Хотя обе величины были рассчитаны и при бесконечном разбавлении, однако влияние ионной силы на отношение г//)] предполагается небольшим. При сравнении этих величин с рассчитанными по уравнениям (12.5) и (12.6) отмечается полное согласование экспериментальных и теоретических данных. [c.140]

    Скорость gi можно разложить на две компоненты v — среднюю макроскопическую скорость движения в пространстве и Vio — пространственную скорость i-x частиц относительно всей массы газа. Компонента Vip представляет собой часть обш,ей скорости движения i-x частиц, которая обусловлена диффузией частиц в реагирующей смеси. Он определяется градиентом концентраций частиц, который в свою йчередь определяется уравнением [c.401]

    Движение компонента происходит в направлении меньшей концентрации. Вследствие этого градиент концентрации отрицателен и в уравнении (VIII-158) появляется знак минус, чтобы скорость диффузии была положительной. [c.245]

    Тур и Марчелло [231] рассматривали пленочную и пенетращюнную теории как крайние случаи процесса переноса, для которых в формулах коэффициента массоотдачи показатель степени при коэффициенте диффузии принимает предельные значения, равные 1 и 0,5, соответственно. Они считали, что в реальных условиях значения показателя степени могут колебаться между этими величинами. Предложенная ими пленочно-пенетрационная модель также основана на идее обновления поверхности турбулентными вихрями, но с более гибким учетом периода обновления. При малых временах пребывания вихря на поверхности процесс массопередачи нестационарен (пенетрационная теория), тогда как при больших временах успевает установиться постоянный градиент концентраций и наблюдается стационарный режим (пленочная теория). Для произвольных значений времен обновления модель учитьгеает оба механизма массопередачи — стационарный и нестационарный. Математическая формулировка пленочно-пенетрационной модели сводится к решению уравнения (4.12) при условии, что постоянное значение концентрации задается не на бесконечность, как в модели Хигби, а на конечном расстоянии от поверхности тела. Величина этого расстояния, как правило, неизвестна, и не указаны какие-либо надежные модели ее определения. [c.175]

    Следует особенно отметить возбуждение турбулентности путем перемешивания или какими-либо другими методами. Турбулентность влияет не только на величину поверхности раздела фаз, но и позволяет устранить влийние малых градиентов концентрации, что в противном случае могло бы привести к снижению скорости диффузии. При выводе выражения Для суммарной скорости гетерогенной реакции необходимо учитывать как скорость массо- [c.173]


Смотреть страницы где упоминается термин Градиент концентрации при диффузии: [c.47]    [c.107]    [c.127]    [c.174]    [c.552]    [c.245]    [c.137]    [c.150]    [c.33]   
Курс коллоидной химии (1976) -- [ c.59 ]

Краткий курс коллойдной химии (1958) -- [ c.43 ]




ПОИСК





Смотрите так же термины и статьи:

Градиент концентрации

Диффузии градиент

Диффузия против градиента концентраци

Диффузия электролита под действием градиента концентраций

Концентрации градиент и диффузи

Нестационарная диффузия и градиенты концентрации



© 2025 chem21.info Реклама на сайте